帳號:guest(18.224.59.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林傑
作者(外文):Lin, Jeff
論文名稱(中文):Cu2ZnSn(S,Se)4薄膜太陽能電池之前驅漿料設計與薄膜製備
論文名稱(外文):Precursor solution design and film fabrication for Cu2ZnSn(S,Se)4 thin film solar cell
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):甘炯耀
江建志
口試委員(外文):Jiong-Yao Gan
Chien-Chih Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031613
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:薄膜太陽能電池漿料設計
外文關鍵詞:Solar cellprecursor solution designCZTSSe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
摘要
CZTSSe太陽能電池是目前所有薄膜太陽能電池中非常具有潛力的太陽能電池之一。CZTSSe所有的材料都是地球上所富含的元素,可以把成本壓到非常低。目前最高效率的CZTSSe是由IBM所發表的12.6 %。雖然IBM使用的是溶液法的聯胺製程,然而聯胺是一種具有很強的毒性及危險性的溶劑,所以無法應用到工業量產上面。因此許多團隊開始發展能夠量產的溶液製程,其中奈米粒子的製程技術製作出來的CZTSSe元件最高可達9.6 %。但由於一般的奈米粒子合成都會使用長碳鏈的分散劑來穩定奈米粒子,而這些有機化合物容易殘留在薄膜內部影響元件效率。在本論文中,我們引用了以金屬硫化物錯合物Sn2S64-做為分散劑的概念,開發一種新的前驅漿料設計。一方面是避免碳鏈分散劑的使用,另一方面也用來提供CZTSSe所需要的錫。我們從奈米粒子的合成開始,探討Sn2S64-對於漿料穩定度的影響,接著我們分析漿料中的雜質在熱處理後的殘留情況。最後我們將漿料塗布成薄膜,並且分析薄膜的品質以及示範了元件轉換效率,目前本製成技術可以達到最高的原件轉換效率為0.7 %。
Abstract
CZTSSe has big potential in thin film solar cell, its all made from earth abundant element, those can reduce the cost. The best cell performance of CZTSSe is demonstrated by IBM, so far can reach 12.6%. Although IBM use solution process to fabricate CZTSSe thin film solar cell, which should have potential for large scale fabrication, but hydrazine, the solvent they used is highly toxic and explosive. Many research group start to develop solution process that is suited for large scale fabrication, nanoparticles process, one of the method can reach cell efficiency 9.6% so far. But traditional nanoparticle synthesis used long hydrocarbon chain compound as surfactant to stablize nanoparticles, and those organic compound may residual in device therefor reduce cell performance. In this research, we refer to the idea that using metal chalcogenide complex Sn2S64- as surfactant to design a new ink for CZTSSe. Sn2S64- can replace long hydrocarbon chain compound, and provide Tin we need. We start from synthesising the nanoparticles, then probe into the influence on Sn2S64- to ink stability. We also analysis the residual of by-products after heat treatment. In the final, we fabricate thin film by coating our ink on substrate and analysis the film quality. The best cell performance we can reach so far is 0.7%.
第一章 序論..................................................................................1
1.1 太陽能電池發展史..................................................................1
1.2 太陽能電池簡介......................................................................2
1.3 溶液製程.................................................................................2
第二章 文獻回顧...........................................................................4
2.1 Cu2ZnSn(S,Se)4之基本性質...................................................4
2.1.1 Cu2ZnSn(S,Se)4之晶體結構................................................4
2.1.2 Cu2ZnSn(S,Se)4之光學性質................................................5
2.1.3 Cu2ZnSn(S,Se)4內之缺陷與載子復合機制...........................5
2.2 奈米粒子穩定性及合成............................................................6
2.2.1 離子強度...............................................................................6
2.2.2 電雙層...................................................................................7
2.2.3 界達電位(Zeta potential)........................................................8
2.2.4 DLVO 理論.............................................................................8
2.2.5 奈米粒子成核及成長...............................................................8
2.2.6 奈米粒子的純化和分離...........................................................9
2.2.7 不使用特殊分散劑的奈米粒子合成........................................10
2.2.8 聯胺製程...............................................................................10
2.2.9 金屬硫屬化合物錯合物(metal chalcogenide complex)...........11
2.3 溶液法Cu2ZnSn(S,Se)4製程回顧..............................................12
2.3.1 聯胺製程................................................................................12
2.3.2 二元及三元奈米粒子混成法製程..............................................14
2.3.3 四元奈米粒子製程.....................................................................15
2.3.4 金屬鹽溶液法製程.....................................................................16
2.3.5 溶膠-凝膠法製程.......................................................................17
2.3.6 噴塗熱裂解法製程.....................................................................17
2.3.7 電化學沈積法.............................................................................18
2.4 研究動機.......................................................................................18
第三章 實驗方法及分析技術................................................................20
3.1 實驗方法........................................................................................20
3.1.1 Cu(2-x)S nanoparticle 合成...........................................................20
3.1.2 ZnS nanoparticle合成..................................................................20
3.1.3 (NH4)4Sn2S6合成..........................................................................20
3.1.4 前驅漿料合成...............................................................................20
3.1.5 溶液塗布......................................................................................20
3.1.6 硒氣氛退火...................................................................................21
3.2 分析技術..........................................................................................22
3.2.1 穿透式電子顯微鏡.........................................................................22
3.2.2 掃瞄式電子顯微鏡.........................................................................23
3.2.3 X-光繞射.......................................................................................23
3.2.4 傅立葉轉換紅外光譜儀..................................................................23
3.2.5 熱重分析儀....................................................................................24
3.2.6 感應耦合電漿質譜儀......................................................................24
3.2.7 動態光散射粒徑分析儀及界面電位分析儀......................................24
3.2.8 拉曼光譜儀 (Raman Spectroscopy)...............................................25
第四章 結果與討論..................................................................................26
4.1 奈米粒子合成....................................................................................26
4.1.1 Cu(2-x)S 奈米粒子分析.....................................................................26
4.1.2 ZnS 奈米粒子分析...........................................................................28
4.1.3 (NH4)4Sn2S6 分析............................................................................28
4.2 漿料穩定性.........................................................................................29
4.2.1 硫離子及金屬硫化物錯合物對Zeta Potential的影響........................29
4.2.2 金屬硫化物錯合物對奈米粒子分佈的影響.......................................33
4.2.3 沉降實驗.........................................................................................34
4.3 漿料熱處理.........................................................................................36
4.3.1 熱重分析...........................................................................................36
4.3.2 IR光譜分析.......................................................................................37
4.4 薄膜製作..............................................................................................41
4.4.1 前驅薄膜塗布....................................................................................41
4.4.2 CZTSSe薄膜分析.............................................................................44
第五章 結論...............................................................................................48
參考文獻....................................................................................................49
[1] G. K. Singh, “Solar power generation by PV (photovoltaic) technology: A review,” Energy, vol. 53, no. C, pp. 1–13, May 2013.
[2] Available from: http://www.nrel.gov/ncpv/
[3] J. Paier, R. Asahi, A. Nagoya, and G. Kresse, “Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study,” Phys. Rev. B, vol. 79, no. 11, p. 115126, Mar. 2009.
[4] K. Ito and T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films - Abstract - Japanese Journal of Applied Physics - IOPscience,” Japanese Journal of Applied Physics, 1988.
[5] K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 838–842, Mar. 2011.
[6] G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar, and S. Raja Vanjari, “Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films,” Solar Energy Materials and Solar Cells, vol. 94, no. 2, pp. 221–226, Feb. 2010.
[7] J. M. Raulot, C. Domain, and J. F. Guillemoles, “Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application,” Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 2019–2023, Nov. 2005.
[8] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Defect physics of the kesterite thin-film solar cell absorber Cu[sub 2]ZnSnS[sub 4],” Appl. Phys. Lett., vol. 96, no. 2, p. 021902, 2010.
[9] S. Chen, J.-H. Yang, X. G. Gong, A. Walsh, and S.-H. Wei, “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu_{2}ZnSnS_{4},” Phys. Rev. B, vol. 81, no. 24, p. 245204, Jun. 2010.
[10] C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se[sub 2] thin films benefit photovoltaic performance of the device?,” Appl. Phys. Lett., vol. 85, no. 13, p. 2625, 2004.
[11] J. B. Li, V. Chawla, and B. M. Clemens, “Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy,” Adv. Mater., vol. 24, no. 6, pp. 720–723, Jan. 2012.
[12] E. Verwey, J. Overbeek, and K. Van Nes, “Verwey, Overbeek and Nes (1948) Theory of the stability of lyophobic colloids: The interaction of sol particles having an electric double layer,” 1948.
[13] 國家奈米元件實驗室奈米通訊第六期第一卷
[14] G. Giupponi and I. Pagonabarraga, “Determination of the zeta potential for highly charged colloidal suspensions,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1945, pp. 2546–2554, May 2011.
[15] J. Olsson and P. O. Glantz, “Effect of pH and counter ions on the zeta-potential of oral streptococci,” Archives of oral biology, 1977.
[16] J. Gustafsson, P. Mikkola, M. Jokinen, and J. B. Rosenholm, “The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 175, no. 3, pp. 349–359, Dec. 2000.
[17] B. V. Derjaguin and L. Landau, “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes,” Acta Physicochim, vol. 14, pp. 633–662, May 1941.
[18] S. Bhattacharjee, M. Elimelech, and M. Borkovec, “DLVO interaction between colloidal particles: beyond Derjaguin's approximation,” Croatica Chemica Acta, 1998.
[19] C. B. Murray, C. R. Kagan, and M. G. Bawendi, “S YNTHESIS ANDC HARACTERIZATION OFM ONODISPERSEN ANOCRYSTALS ANDC LOSE-P ACKEDN ANOCRYSTALA SSEMBLIES,” Annu. Rev. Mater. Sci., vol. 30, no. 1, pp. 545–610, Aug. 2000.
[20] D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications,” Chem. Rev., vol. 110, no. 1, pp. 389–458, Jan. 2010.
[21] H. Kawasaki, “Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing,” Nanotechnology Reviews, vol. 2, no. 1.
[22] M. E. Wankhede and S. K. Haram, “Synthesis and Characterization of Cd−DMSO Complex Capped CdS Nanoparticles,” Chem. Mater., vol. 15, no. 6, pp. 1296–1301, Mar. 2003.
[23] D. B. Mitzi, “Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction,” Adv. Mater., vol. 21, no. 31, pp. 3141–3158, Aug. 2009.
[24] David B. Mitzi, Laura L. Kosbar, Conal E. Murray, Matthew Copel & Ali Afzali,“High-mobility ultrathinsemiconducting filmsprepared by spin coating,” Nature,vol. 428, 299-303,March 2004
[25] M. V. Kovalenko, M. Scheele, and D. V. Talapin, “Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands,” Science, vol. 324, no. 5933, pp. 1417–1420, Jun. 2009.
[26] M. V. Kovalenko, M. I. Bodnarchuk, J. Zaumseil, J.-S. Lee, and D. V. Talapin, “Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands,” J. Am. Chem. Soc., vol. 132, no. 29, pp. 10085–10092, Jul. 2010.
[27] A. Nag, M. V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free Inorganic Ligands for Colloidal Nanocrystals: S 2–, HS –, Se 2–, HSe –, Te 2–, HTe –, TeS 32–, OH –, and NH 2–as Surface Ligands,” J. Am. Chem. Soc., vol. 133, no. 27, pp. 10612–10620, Jul. 2011.
[28] T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber,” Adv. Mater., vol. 22, no. 20, pp. E156–E159, May 2010.
[29] Wei Wang, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu andDavid B. Mitzi*, “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Advanced Energy Materials Vol. 4, Issue 7, May 13, 2014
[30] Y. Cao, M. S. Denny Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, and W. Wu, “High-Efficiency Solution-Processed Cu 2ZnSn(S,Se) 4Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc., vol. 134, no. 38, pp. 15644–15647, Sep. 2012.
[31] C. Jiang, J.-S. Lee, and D. V. Talapin, “Soluble Precursors for CuInSe 2, CuIn 1– xGa xSe 2, and Cu 2ZnSn(S,Se) 4Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands,” J. Am. Chem. Soc., vol. 134, no. 11, pp. 5010–5013, Mar. 2012.
[32] Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu 2ZnSnS 4Nanocrystal Ink and Its Use for Solar Cells,” J. Am. Chem. Soc., vol. 131, no. 33, pp. 11672–11673, Aug. 2009.
[33] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, “Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals,” J. Am. Chem. Soc., vol. 132, no. 49, pp. 17384–17386, Dec. 2010.
[34] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu 2ZnSnS 4Nanocrystals for Use in Low-Cost Photovoltaics,” J. Am. Chem. Soc., vol. 131, no. 35, pp. 12554–12555, Sep. 2009.
[35] W. Ki and H. W. Hillhouse, “Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent,” Adv. Energy Mater., vol. 1, no. 5, pp. 732–735, Aug. 2011.
[36] T. Schnabel, M. Löw, and E. Ahlswede, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 117, no. c, pp. 324–328, Oct. 2013.
[37] Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, and M. A. Green, “Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route,” J. Mater. Chem. A, vol. 2, no. 2, p. 500, 2013.
[38] X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, and L. H. Wong, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 124, no. C, pp. 55–60, May 2014.
[39] S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, “A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell,” Adv. Energy Mater., vol. 2, no. 2, pp. 253–259, Nov. 2011.
[40] W. Yang, H.-S. Duan, K. C. Cha, C.-J. Hsu, W.-C. Hsu, H. Zhou, B. Bob, and Y. Yang, “Molecular Solution Approach To Synthesize Electronic Quality Cu 2ZnSnS 4Thin Films,” J. Am. Chem. Soc., vol. 135, no. 18, pp. 6915–6920, May 2013.
[41] Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry (illustrated ed.). Academic Press. p. 614.
[42] P. Nørby, J. Overgaard, P. S. Christensen, B. Richter, X. Song, M. Dong, A. Han, J. Skibsted, B. B. Iversen, and S. Johnsen, “(NH 4) 4Sn 2S 6∙3H 2O: Crystal structure, thermal decomposition and precursor for textured thin-film,” Chem. Mater., p. 140707150754007, Jul. 2014.
[43] A. Théorêt, C. Sandorfy, “INFRARED SPECTRA AND CRYSTALLINE PHASE TRANSITIONS OF AMMONIUM NITRATE,” Canadian Journal of Chemistry, 1964, 42(1): 57-62
[44] L. F. H. BOVEY, “The Infrared Absorption and Reflection Spectra of the ammonium halides,” JOSA, Vol. 41, Issue 11, pp. 836-848 (1951).
[45] I. Markova Deneva, “INFRARED SPECTROSCOPY INVESTIGATION OF METALLIC NANOPARTICLES BASED ON COPPER, COBALT, AND NICKEL SYNTHESIZED THROUGH BOROHYDRIDE REDUCTION METHOD (REVIEW),” Journal of the University of Chemical Technology and Metallurgy, 45, 4, 2010, 351-378.
[46] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications,” Thin Solid Films, vol. 519, no. 21, pp. 7403–7406, Aug. 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *