|
[1] G. K. Singh, “Solar power generation by PV (photovoltaic) technology: A review,” Energy, vol. 53, no. C, pp. 1–13, May 2013. [2] Available from: http://www.nrel.gov/ncpv/ [3] J. Paier, R. Asahi, A. Nagoya, and G. Kresse, “Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study,” Phys. Rev. B, vol. 79, no. 11, p. 115126, Mar. 2009. [4] K. Ito and T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films - Abstract - Japanese Journal of Applied Physics - IOPscience,” Japanese Journal of Applied Physics, 1988. [5] K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 838–842, Mar. 2011. [6] G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar, and S. Raja Vanjari, “Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films,” Solar Energy Materials and Solar Cells, vol. 94, no. 2, pp. 221–226, Feb. 2010. [7] J. M. Raulot, C. Domain, and J. F. Guillemoles, “Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application,” Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 2019–2023, Nov. 2005. [8] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, “Defect physics of the kesterite thin-film solar cell absorber Cu[sub 2]ZnSnS[sub 4],” Appl. Phys. Lett., vol. 96, no. 2, p. 021902, 2010. [9] S. Chen, J.-H. Yang, X. G. Gong, A. Walsh, and S.-H. Wei, “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu_{2}ZnSnS_{4},” Phys. Rev. B, vol. 81, no. 24, p. 245204, Jun. 2010. [10] C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and M. M. Al-Jassim, “Does the local built-in potential on grain boundaries of Cu(In,Ga)Se[sub 2] thin films benefit photovoltaic performance of the device?,” Appl. Phys. Lett., vol. 85, no. 13, p. 2625, 2004. [11] J. B. Li, V. Chawla, and B. M. Clemens, “Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy,” Adv. Mater., vol. 24, no. 6, pp. 720–723, Jan. 2012. [12] E. Verwey, J. Overbeek, and K. Van Nes, “Verwey, Overbeek and Nes (1948) Theory of the stability of lyophobic colloids: The interaction of sol particles having an electric double layer,” 1948. [13] 國家奈米元件實驗室奈米通訊第六期第一卷 [14] G. Giupponi and I. Pagonabarraga, “Determination of the zeta potential for highly charged colloidal suspensions,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1945, pp. 2546–2554, May 2011. [15] J. Olsson and P. O. Glantz, “Effect of pH and counter ions on the zeta-potential of oral streptococci,” Archives of oral biology, 1977. [16] J. Gustafsson, P. Mikkola, M. Jokinen, and J. B. Rosenholm, “The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 175, no. 3, pp. 349–359, Dec. 2000. [17] B. V. Derjaguin and L. Landau, “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes,” Acta Physicochim, vol. 14, pp. 633–662, May 1941. [18] S. Bhattacharjee, M. Elimelech, and M. Borkovec, “DLVO interaction between colloidal particles: beyond Derjaguin's approximation,” Croatica Chemica Acta, 1998. [19] C. B. Murray, C. R. Kagan, and M. G. Bawendi, “S YNTHESIS ANDC HARACTERIZATION OFM ONODISPERSEN ANOCRYSTALS ANDC LOSE-P ACKEDN ANOCRYSTALA SSEMBLIES,” Annu. Rev. Mater. Sci., vol. 30, no. 1, pp. 545–610, Aug. 2000. [20] D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications,” Chem. Rev., vol. 110, no. 1, pp. 389–458, Jan. 2010. [21] H. Kawasaki, “Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing,” Nanotechnology Reviews, vol. 2, no. 1. [22] M. E. Wankhede and S. K. Haram, “Synthesis and Characterization of Cd−DMSO Complex Capped CdS Nanoparticles,” Chem. Mater., vol. 15, no. 6, pp. 1296–1301, Mar. 2003. [23] D. B. Mitzi, “Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction,” Adv. Mater., vol. 21, no. 31, pp. 3141–3158, Aug. 2009. [24] David B. Mitzi, Laura L. Kosbar, Conal E. Murray, Matthew Copel & Ali Afzali,“High-mobility ultrathinsemiconducting filmsprepared by spin coating,” Nature,vol. 428, 299-303,March 2004 [25] M. V. Kovalenko, M. Scheele, and D. V. Talapin, “Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands,” Science, vol. 324, no. 5933, pp. 1417–1420, Jun. 2009. [26] M. V. Kovalenko, M. I. Bodnarchuk, J. Zaumseil, J.-S. Lee, and D. V. Talapin, “Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands,” J. Am. Chem. Soc., vol. 132, no. 29, pp. 10085–10092, Jul. 2010. [27] A. Nag, M. V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free Inorganic Ligands for Colloidal Nanocrystals: S 2–, HS –, Se 2–, HSe –, Te 2–, HTe –, TeS 32–, OH –, and NH 2–as Surface Ligands,” J. Am. Chem. Soc., vol. 133, no. 27, pp. 10612–10620, Jul. 2011. [28] T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber,” Adv. Mater., vol. 22, no. 20, pp. E156–E159, May 2010. [29] Wei Wang, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu andDavid B. Mitzi*, “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Advanced Energy Materials Vol. 4, Issue 7, May 13, 2014 [30] Y. Cao, M. S. Denny Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, and W. Wu, “High-Efficiency Solution-Processed Cu 2ZnSn(S,Se) 4Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles,” J. Am. Chem. Soc., vol. 134, no. 38, pp. 15644–15647, Sep. 2012. [31] C. Jiang, J.-S. Lee, and D. V. Talapin, “Soluble Precursors for CuInSe 2, CuIn 1– xGa xSe 2, and Cu 2ZnSn(S,Se) 4Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands,” J. Am. Chem. Soc., vol. 134, no. 11, pp. 5010–5013, Mar. 2012. [32] Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu 2ZnSnS 4Nanocrystal Ink and Its Use for Solar Cells,” J. Am. Chem. Soc., vol. 131, no. 33, pp. 11672–11673, Aug. 2009. [33] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, “Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals,” J. Am. Chem. Soc., vol. 132, no. 49, pp. 17384–17386, Dec. 2010. [34] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu 2ZnSnS 4Nanocrystals for Use in Low-Cost Photovoltaics,” J. Am. Chem. Soc., vol. 131, no. 35, pp. 12554–12555, Sep. 2009. [35] W. Ki and H. W. Hillhouse, “Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent,” Adv. Energy Mater., vol. 1, no. 5, pp. 732–735, Aug. 2011. [36] T. Schnabel, M. Löw, and E. Ahlswede, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 117, no. c, pp. 324–328, Oct. 2013. [37] Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, and M. A. Green, “Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route,” J. Mater. Chem. A, vol. 2, no. 2, p. 500, 2013. [38] X. Zeng, K. F. Tai, T. Zhang, C. W. J. Ho, X. Chen, A. Huan, T. C. Sum, and L. H. Wong, “Solar Energy Materials & Solar Cells,” Solar Energy Materials and Solar Cells, vol. 124, no. C, pp. 55–60, May 2014. [39] S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, “A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell,” Adv. Energy Mater., vol. 2, no. 2, pp. 253–259, Nov. 2011. [40] W. Yang, H.-S. Duan, K. C. Cha, C.-J. Hsu, W.-C. Hsu, H. Zhou, B. Bob, and Y. Yang, “Molecular Solution Approach To Synthesize Electronic Quality Cu 2ZnSnS 4Thin Films,” J. Am. Chem. Soc., vol. 135, no. 18, pp. 6915–6920, May 2013. [41] Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry (illustrated ed.). Academic Press. p. 614. [42] P. Nørby, J. Overgaard, P. S. Christensen, B. Richter, X. Song, M. Dong, A. Han, J. Skibsted, B. B. Iversen, and S. Johnsen, “(NH 4) 4Sn 2S 6∙3H 2O: Crystal structure, thermal decomposition and precursor for textured thin-film,” Chem. Mater., p. 140707150754007, Jul. 2014. [43] A. Théorêt, C. Sandorfy, “INFRARED SPECTRA AND CRYSTALLINE PHASE TRANSITIONS OF AMMONIUM NITRATE,” Canadian Journal of Chemistry, 1964, 42(1): 57-62 [44] L. F. H. BOVEY, “The Infrared Absorption and Reflection Spectra of the ammonium halides,” JOSA, Vol. 41, Issue 11, pp. 836-848 (1951). [45] I. Markova Deneva, “INFRARED SPECTROSCOPY INVESTIGATION OF METALLIC NANOPARTICLES BASED ON COPPER, COBALT, AND NICKEL SYNTHESIZED THROUGH BOROHYDRIDE REDUCTION METHOD (REVIEW),” Journal of the University of Chemical Technology and Metallurgy, 45, 4, 2010, 351-378. [46] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik, “Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications,” Thin Solid Films, vol. 519, no. 21, pp. 7403–7406, Aug. 2011. |