|
1. http://oled.lcdtvbuyingguide.com/oled-tv-articles/sony-ces-2011.html. 2. http://www.whathifi.com/news. 3. http://www.samsungces.com/keynote.aspx. 4. http://www.lg.com/uk/tvs/lg-55EM960V-oled-tv. 5. https://www1.eere.energy.gov/buildings/ssl/highlights_ge.html. 6. http://www.oled-info.com. 7. http://www.archiproducts.com/en/products/29080. 8. http://www.oled-info.com/lumiotec-p06-oled-lighting-panels. 9. M. Pope, H. P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38, 2042. 10. P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982, 94, 171. 11. C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913. 12. C. W. Tang, S. A. VanSlyke, and C. H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 1989, 65, 3610. 13. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539. 14. H. Yersin, Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. 2004, 241. 15. http://www.uni-leipzig.de/~pwm/web. 16. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals. 17. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. J. Mater. Chem. 2012, 22, 1411. 18. S.-J. Kim, Y. Zhang, C. Zuniga, S. Barlow, S. R. Marder, and B. Kippelen, Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org. Electron. 2011, 12, 492. 19. C. W. Lee and J. Y. Lee, High quantum efficiency in solution and vacuum processed blue phosphorescent organic light emitting diodes using a novel benzofuropyridine-based bipolar host material. Adv. Mater. 2013, 25, 596. 20. K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. P. Kennedy, and J. H. Kwon, Small molecule host system for solution-processed red phosphorescent OLEDs. Synth. Met. 2010, 160, 631. 21. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955. 22. J. Krantz, M. Richter, S. Spallek, E. Spiecker, and C. J. Brabec, Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells. Adv. Funct. Mater. 2011, 21, 4784. 23. J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I. F. Lin, and S.-F. Horng, All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Org. Electron. 2009, 10, 1610. 24. L.-C. Ko, T.-Y. Liu, C.-Y. Chen, C.-L. Yeh, S.-R. Tseng, Y.-C. Chao, H.-F. Meng, S.-C. Lo, P. L. Burn, and S.-F. Horng, Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Org. Electron. 2010, 11, 1005. 25. H.-C. Yeh, H.-F. Meng, H.-W. Lin, T.-C. Chao, M.-R. Tseng, and H.-W. Zan, All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Org. Electron. 2012, 13, 914. 26. Y.-F. Chang, Y.-C. Chiu, H.-C. Yeh, H.-W. Chang, C.-Y. Chen, H.-F. Meng, H.-W. Lin, H.-L. Huang, T.-C. Chao, M.-R. Tseng, H.-W. Zan, and S.-F. Horng, Unmodified small-molecule organic light-emitting diodes by blade coating. Org. Electron. 2012, 13, 2149. 27. http://www.mtixtl.com/SyringePumpSP300.aspx. 28. Y. Li, B.-X. Li, W.-Y. Tan, Y. Liu, X.-H. Zhu, F.-Y. Xie, J. Chen, D.-G. Ma, J. Peng, Y. Cao, and J. Roncali, Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes. Org. Electron. 2012, 13, 1092. 29. A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 2013, 7, 1081. 30. H. Youn, K. Jeon, S. Shin, and M. Yang, All-solution blade–slit coated polymer light-emitting diodes. Org. Electron. 2012, 13, 1470. 31. S.-C. Chang, J. Liu, J. Bharathan, Y. Yang, J. Onohara, and J. Kido, Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing. Adv. Mater. 1999, 11, 734. 32. F. Villani, P. Vacca, R. Miscioscia, G. Nenna, G. Burrasca, T. Fasolino, C. Minarini, and D. d. Sala, OLED with Hole-Transporting Layer Fabricated by Ink-Jet Printing. Macromolecular Symposia 2009, 286, 101. 33. D. Braga, N. C. Erickson, M. J. Renn, R. J. Holmes, and C. D. Frisbie, High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices. Adv. Funct. Mater. 2012, 22, 1623. 34. G. J. McGraw and S. R. Forrest, Vapor-phase microprinting of multicolor phosphorescent organic light emitting device arrays. Adv. Mater. 2013, 25, 1583. 35. A. Teichler, Z. Shu, A. Wild, C. Bader, J. Nowotny, G. Kirchner, S. Harkema, J. Perelaer, and U. S. Schubert, Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49, 2186. 36. F. Ely, C. O. Avellaneda, P. Paredez, V. C. Nogueira, T. E. A. Santos, V. P. Mammana, C. Molina, J. Brug, G. Gibson, and L. Zhao, Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties. Synth. Met. 2011, 161, 2129. 37. http://www.dp3project.org/technologies/digital-printing/inkjet. 38. C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, and K. Leo, Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells. Org. Electron. 2013, 14, 143. 39. http://www.ahk-service.de/main/coating-technologies. 40. G. Liaptsis and K. Meerholz, Crosslinkable TAPC-Based Hole-Transport Materials for Solution-Processed Organic Light-Emitting Diodes with Reduced Efficiency Roll-Off. Adv. Funct. Mater. 2013, 23, 359. 41. J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, Fully Solution-Based Fabrication of Flexible Light-Emitting Device at Ambient Conditions. J. Phys. Chem. C 2013, 117, 16632. 42. G.-K. Ho, H.-F. Meng, S.-C. Lin, S.-F. Horng, C.-S. Hsu, L.-C. Chen, and S.-M. Chang, Efficient white light emission in conjugated polymer homojunctions. Appl. Phys. Lett. 2004, 85, 4576. 43. J.-S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes. Appl. Phys. Lett. 2005, 87, 023506. 44. D. D. Zhai, T. Y. Zhang, J. B. Guo, X. H. Fang, and J. Wei, Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2013, 424, 1. 45. E. Ahmed, T. Earmme, and S. A. Jenekhe, New Solution-Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs. Adv. Funct. Mater. 2011, 21, 3889. 46. T. Earmme, E. Ahmed, and S. A. Jenekhe, Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material. Adv. Mater. 2010, 22, 4744. 47. S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, Multilayer polymer light-emitting diodes by blade coating method. Appl. Phys. Lett. 2008, 93, 153308. 48. C.-C. Fan, M.-H. Huang, W.-C. Lin, H.-W. Lin, Y. Chi, H.-F. Meng, T.-C. Chao, and M.-R. Tseng, Single-emission-layer white organic light-emitting devices: Chromaticity and colour-rendering consideration. Org. Electron. 2014, 15, 517. 49. S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151. 50. Y. M. Cheng, G. H. Lee, P. T. Chou, L. S. Chen, Y. Chi, C. H. Yang, Y. H. Song, S. Y. Chang, P. I. Shih, and C. F. Shu, Rational design of Chelating phosphine functionalized Os((II)) emitters and fabrication of orange polymer light-emitting diodes using solution process. Adv. Funct. Mater. 2008, 18, 183. 51. Y.-L. Tung, S.-W. Lee, Y. Chi, Y.-T. Tao, C.-H. Chien, Y.-M. Cheng, P.-T. Chou, S.-M. Peng, and C.-S. Liu, Organic light-emitting diodes based on charge-neutral Os(ii) emitters: generation of saturated red emission with very high external quantum efficiency. J. Mater. Chem. 2005, 15, 460. 52. Y. L. Tung, S. W. Lee, Y. Chi, L. S. Chen, C. F. Shu, F. I. Wu, A. J. Carty, P. T. Chou, S. M. Peng, and G. H. Lee, Organic Light-Emitting Diodes based on Charge-Neutral RuII Phosphorescent Emitters. Adv. Mater. 2005, 17, 1059. 53. Y. L. Tung, L. S. Chen, Y. Chi, P. T. Chou, Y. M. Cheng, E. Y. Li, G. H. Lee, C. F. Shu, F. I. Wu, and A. J. Carty, Orange and Red Organic Light-Emitting Devices Employing Neutral Ru(II) Emitters: Rational Design and Prospects for Color Tuning. Adv. Funct. Mater. 2006, 16, 1615. 54. B. Ma, P. I. Djurovich, S. Garon, B. Alleyne, and M. E. Thompson, Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting Diodes. Adv. Funct. Mater. 2006, 16, 2438. 55. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S.-T. Lee, and C.-M. Che, [(C^N^N)Pt(C=C)nR] (HC^N^N = 6-aryl-2,2'-bipyridine, n = 1–4, R = aryl, SiMe3) as a new class of light-emitting materials and their applications in electrophosphorescent devices. Chem. Commun. 2002, 206. 56. S. Y. Chang, J. Kavitha, S. W. Li, C. S. Hsu, Y. Chi, Y. S. Yeh, P. T. Chou, G. H. Lee, A. J. Carty, Y. T. Tao, and C. H. Chien, Platinum(II) complexes with pyridyl azolate-based chelates: Synthesis, structural characterization, and tuning of photo- and electrophosphorescence. Inorg. Chem. 2006, 45, 137. 57. L. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen, and Q. Pei, Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563. 58. M. Cai, Z. Ye, T. Xiao, R. Liu, Y. Chen, R. W. Mayer, R. Biswas, K. M. Ho, R. Shinar, and J. Shinar, Extremely efficient indium-tin-oxide-free green phosphorescent organic light-emitting diodes. Adv. Mater. 2012, 24, 4337. 59. C. Cai, S.-J. Su, T. Chiba, H. Sasabe, Y.-J. Pu, K. Nakayama, and J. Kido, High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Org. Electron. 2011, 12, 843. 60. E. Najafabadi, K. A. Knauer, W. Haske, C. Fuentes-Hernandez, and B. Kippelen, Highly efficient inverted top-emitting green phosphorescent organic light-emitting diodes on glass and flexible substrates. Appl. Phys. Lett. 2012, 101, 023304. 61. B.-S. Du, J.-L. Liao, M.-H. Huang, C.-H. Lin, H.-W. Lin, Y. Chi, H.-A. Pan, G.-L. Fan, K.-T. Wong, G.-H. Lee, and P.-T. Chou, Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Adv. Funct. Mater. 2012, 22, 3491. 62. Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, and C. Adachi, Triplet Exciton Confinement in Green Organic Light-Emitting Diodes Containing Luminescent Charge-Transfer Cu(I) Complexes. Adv. Funct. Mater. 2012, 22, 2327. 63. Y. Liu, Y. Wang, J. He, Q. Mei, K. Chen, J. Cui, C. Li, M. Zhu, J. Peng, W. Zhu, and Y. Cao, High-efficiency red electroluminescence from europium complex containing a neutral dipyrido(3,2-a:2',3'-c)phenazine ligand in PLEDs. Org. Electron. 2012, 13, 1038. 64. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes. Adv. Mater. 2012, 24, 5099. 65. S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92, 1570. 66. J. Lee, J.-I. Lee, K.-I. Song, S. J. Lee, and H. Y. Chu, Effects of interlayers on phosphorescent blue organic light-emitting diodes. Appl. Phys. Lett. 2008, 92, 203305. 67. Y. Chen, J. Chen, Y. Zhao, and D. Ma, High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Appl. Phys. Lett. 2012, 100, 213301. 68. S. Gong, Q. Fu, Q. Wang, C. Yang, C. Zhong, J. Qin, and D. Ma, Highly efficient deep-blue electrophosphorescence enabled by solution-processed bipolar tetraarylsilane host with both a high triplet energy and a high-lying HOMO level. Adv. Mater. 2011, 23, 4956. 69. S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Adv. Mater. 2008, NA. 70. W. Jiang, L. Duan, J. Qiao, G. Dong, D. Zhang, L. Wang, and Y. Qiu, High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. J. Mater. Chem. 2011, 21, 4918. 71. K. S. Yook and J. Y. Lee, Organic materials for deep blue phosphorescent organic light-emitting diodes. Adv. Mater. 2012, 24, 3169. 72. H. Fukagawa, N. Yokoyama, S. Irisa, and S. Tokito, Pyridoindole derivative as electron transporting host material for efficient deep-blue phosphorescent organic light-emitting diodes. Adv. Mater. 2010, 22, 4775. 73. S. Ye, Y. Liu, J. Chen, K. Lu, W. Wu, C. Du, Y. Liu, T. Wu, Z. Shuai, and G. Yu, Solution-processed solid solution of a novel carbazole derivative for high-performance blue phosphorescent organic light-emitting diodes. Adv. Mater. 2010, 22, 4167. 74. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 2001, 79, 2082. 75. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau, and M. E. Thompson, Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands. Polyhedron 2004, 23, 419. 76. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett. 2003, 83, 3818. 77. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, and C. H. Chen, New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices. Adv. Mater. 2005, 17, 285. 78. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, and M. E. Thompson, Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. Inorg. Chem. 2002, 41, 3055. 79. V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest, and M. E. Thompson, High efficiency single dopant white electrophosphorescent light emitting diodes. New J. Chem. 2002, 26, 1171. 80. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency. Adv. Mater. 2007, 19, 197. 81. A. F. Rausch, L. Murphy, J. A. Williams, and H. Yersin, Improving the performance of Pt(II) complexes for blue light emission by enhancing the molecular rigidity. Inorg. Chem. 2012, 51, 312. 82. T. Fleetham, Z. Wang, and J. Li, Efficient deep blue electrophosphorescent devices based on platinum(II) bis(n-methyl-imidazolyl)benzene chloride. Org. Electron. 2012, 13, 1430. 83. T. Fleetham, J. Ecton, Z. Wang, N. Bakken, and J. Li, Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv. Mater. 2013, 25, 2573. 84. I. Cruz-Cruz, M. Reyes-Reyes, M. A. Aguilar-Frutis, A. G. Rodriguez, and R. López-Sandoval, Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synth. Met. 2010, 160, 1501. 85. J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443. 86. N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, Modification of the electrical properties of PEDOT:PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation. Chem. Phys. Lett. 2010, 484, 283. 87. T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 2013, 6, 788. 88. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Adv. Mater. 2008, 20, 4061. 89. R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, ITO-Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films. Adv. Funct. Mater. 2013, 23, 1490. 90. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664. 91. A. B. V. Kiran Kumar, C. wan Bae, L. Piao, and S.-H. Kim, Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 2013, 48, 2944. 92. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977. 93. L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075. 94. C. H. Liu and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 2011, 6, 75. 95. H. J. Lee, T. H. Park, J. H. Choi, E. H. Song, S. J. Shin, H. Kim, K. C. Choi, Y. W. Park, and B.-K. Ju, Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Org. Electron. 2013, 14, 416. 96. Z. Yu, L. Li, Q. Zhang, W. Hu, and Q. Pei, Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453. 97. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905. 98. L. Li, Z. Yu, C. H. Chang, W. Hu, X. Niu, Q. Chen, and Q. Pei, Efficient white polymer light-emitting diodes employing a silver nanowire-polymer composite electrode. Phys. Chem. Chem. Phys. 2012, 14, 14249. 99. Y.-J. Noh, S.-S. Kim, T.-W. Kim, and S.-I. Na, Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT:PSS composite electrodes via a one-step spray deposition method. Sol. Energy Mater. Sol. Cells 2014, 120, 226. 100. J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera, and R. Pacios, Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells 2012, 102, 148. 101. Y. Jin, D. Deng, Y. Cheng, L. Kong, and F. Xiao, Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 2014, 6, 4812. 102. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res 2011, 4, 1215. 103. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241. 104. C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J.-P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 2012, 5, 427. 105. S. Coskun, E. Selen Ates, and H. E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013, 24, 125202. 106. J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408. 107. X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484. 108. C.-Y. Lin, D.-H. Kuo, W.-C. Chen, M.-W. Ma, and G.-S. Liou, Electrical performance of the embedded-type surface electrodes containing carbon and silver nanowires as fillers and one-step organosoluble polyimide as a matrix. Org. Electron. 2012, 13, 2469. 109. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. W. Zhou, Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique. Nano Res 2010, 3, 564. 110. R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li, and Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877. 111. D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, and J. C. de Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371. 112. J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, and C. J. Brabec, Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices. Adv. Funct. Mater. 2013, 23, 1711. |