帳號:guest(3.22.75.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾麗萍
論文名稱(中文):改變材料參數之銅基金屬合金對抗菌特性的影響
論文名稱(外文):On the materials parameters that affect antibacterial properties of Cu base metallic alloys
指導教授(中文):葉安洲
口試委員(中文):黃金川
王尚智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031598
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:69
中文關鍵詞:抗菌微結構銅合金伽凡尼電偶
外文關鍵詞:antibacterialmicrostructurecopper alloysgalvanic coupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本研究主要是改變銅合金的材料參數觀察其抗菌、抗腐蝕的影響,材料的參數包含成分、晶粒尺寸、伽凡尼電偶、析出物以及表面粗糙度。
研究結果顯示增加銅含量可以提升殺菌率。純銅和不銹鋼形成的伽凡尼電偶可促進更多的銅離子釋出進而提升殺菌率。
晶粒尺寸的減少可以使材料達到更好的抗菌表現但抗腐蝕能力也相對下降。Corson70250是一種析出強化型的銅鎳矽合金,鎳矽化合物的析出可以強化整體結構強度,而經過固溶處理和析出處理可以控制析出物的多寡。研究發現越多的析出物可以增加基材本身的銅含量使得抗菌能力提升。最後,表面粗糙度的增加也會提升抗菌表現,因為整體表面積的增加以及粗糙度大的材料具有較低的功函數使得電子較容易釋出。
The present article investigates material parameters that affect performance of the antibacterial properties and the corrosion resistance of the copper and the copper alloys. These parameters include the composition, grain size, galvanic coupling, precipitations and the surface roughness.
Experimental results indicate the increased in copper content can increase the bacterial killing rate (BKR %). Galvanic coupling between Cu-stainless steel can enhance the copper ion release so that antibacterial ability can be improved.
Smaller grain size renders the material better bacterial killing rate during initial exposure but with poor corrosion resistance. Corson70250 is a precipitation strengthened Cu-Ni-Si alloy, which can be strengthened by the fine precipitation of Ni-Si compounds; these phases can increase the copper matrix to result higher BKR%. Finally, the degree of the surface roughness increased, it had the better antibacterial ability since the contact area increased and the rougher surface had the lower electron work function which have easily tendency to escape the electrons.
摘要 i
Abstract ii
Acknowledgements iii
Table of content vii
List of Figures ix
List of Tables xiii
I. Introduction 1
II. Literature Review 2
2.1 General antibacterial materials 2
2.2 Cu as the antibacterial material 2
2.3 Antibacterial mechanism and common testing procedure 5
2.3.1 The mechanism of the microorganism growth 5
2.3.2 Antibacterial mechanism 7
2.3.3 Japanese industrial standard (JIS Z 2801:2000) 10
2.4 Studies on Cu ion release 11
2.4.1 Copper ion release 11
2.4.2 Copper ion release rate 12
2.5 Factors that can affect the corrosion properties of Cu alloys 14
2.5.1 Grain boundaries 14
2.5.2 Precipitates 16
2.5.3 Galvanic coupling 16
2.5.4 Galvanic series of flowing sea water 19
2.5.5 Surface roughness 21
III. Material and Methods 23
3.1 Materials and Experimental Procedures 23
3.2 Material Preparation 26
3.3 Grain Size Controlled 26
3.4 Precipitate Heat Treatment 26
3.5 Vickers Hardness test 29
3.6 Atomic Force Microscope (AFM) 29
3.7 Scanning Electron Microscopy (SEM) 29
3.8 Antibacterial Procedure and ICP-MS test 29
3.9 Electrochemical Experiment 32
3.10 Immersion Corrosion Experiment 33
IV. Result and Discussion 34
4.1 Bulk materials parameters 34
4.1.1 Composition 34
4.1.2 Clad metals galvanic coupling 36
4.1.3 Surface roughness in the bulk view 39
4.2 Microscopic galvanic cells 42
4.2.1 Grain size 42
4.2.2 Precipitates 47
4.2.3 Surface roughness in a microscopic view 51
4.3 Discussion of Galvanic Cells Potential 55
V. Conclusions 60
VI. Prospects 62
VII. Reference 63
1. Matucha, K.H., Structure and properties of nonferrous alloys. Vol. 8. 1996: VCH.
2. Laurin, D. and J. Stupar, Antimicrobial compositions, 1986, Google Patents.
3. Zhao, D.M., J. Zhou, and N. Liu, Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied clay science, 2006. 33(3): p. 161-170.
4. Michels, H.T., et al., Copper alloys for human infectious disease control. Stainless Steel, 2005. 77000(55.0): p. 27.0.
5. Dan, Z.G., et al., Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions. Thin Solid Films, 2005. 492(1-2): p. 93-100.
6. Barrett, C.R., J.L. Lytton, and O.D. Sherby, Effet of grain size and annealing treatment on strady-state creep of copper. Transactions of the Metallurgical Society of Aime, 1967. 239(2): p. 170.
7. Syrett, B.C., Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments-a literature review. Corrosion, 1976. 32(6): p. 242-252.
8. Heidenau, F., et al., A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. Journal of Materials Science: Materials in Medicine, 2005. 16(10): p. 883-888.
9. Wan, Y.Z., et al., Surface modification of medical metals by ion implantation of silver and copper. Vacuum, 2007. 81(9): p. 1114-1118.
10. Sunada, K., et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 1998. 32(5): p. 726-728.
11. Yang, L., et al., Excellent antimicrobial properties of mesoporous anatase TiO 2 and Ag/TiO2composite films. Microporous and Mesoporous Materials, 2008. 114(1): p. 431-439.
12. Zhang, X.Y., et al., Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel. Applied Surface Science, 2011. 258(4): p. 1399-1404.
13. Zhang, Z.X., G. Lin, and Z. Xu, Effects of light pre-deformation on pitting corrosion resistance of copper-bearing ferrite antibacterial stainless steel. Journal of materials processing technology, 2008. 205(1): p. 419-424.
14. Silver, S., Bacterial resistances to toxic metal ions-a review. Gene, 1996. 179(1): p. 9-19.
15. US Environmental Protection Agency. (2008) EPA registers copper-containing alloy products. EPA official website: www.epa.gov/pesticides/factsheets/copper-alloy-products.htm.
16. Noyce, J.O., H. Michels, and C.W. Keevil, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant< i> Staphylococcus aureus in the healthcare environment. Journal of Hospital Infection, 2006. 63(3): p. 289-297.
17. Noyce, J.O., H. Michels, and C.W. Keevil, Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Applied and environmental microbiology, 2006. 72(6): p. 4239-4244.
18. Noyce, J.O., H. Michels, and C.W. Keevil, Inactivation of influenza A virus on copper versus stainless steel surfaces. Applied and environmental microbiology, 2007. 73(8): p. 2748-2750.
19. Michels, H.T., J.O. Noyce, and C.W. Keevil, Effects of temperature and humidity on the efficacy of methicillin‐resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Letters in applied microbiology, 2009. 49(2): p. 191-195.
20. Association, I.C., http://www.antimicrobialcopper.com/uk/scientific-proof/antimicrobial-efficacy.aspx.
21. 林坤毅, et al., 銅合金之抗菌性能研究.
22. Kenneth Todar, P., The Growth of Bacterial Populations (page 3)
http://textbookofbacteriology.net/growth_3.html
23. Santo, C.E., D. Quaranta, and G. Grass, Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen, 2012. 1(1): p. 46-52.
24. Trevors, J.T. and C.M. Cotter, Copper toxicity and uptake in microorganisms. Journal of industrial microbiology, 1990. 6(2): p. 77-84.
25. Liu, P., et al., Study on biological effect of La3+ on Escherichia coli by atomic force microscopy. Journal of inorganic biochemistry, 2004. 98(1): p. 68-72.
26. Nan, L., et al., Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. Journal of Materials Science: Materials in Medicine, 2008. 19(9): p. 3057-3062.
27. Raetz and R.H. Christian, Biochemistry of endotoxins. Annual review of biochemistry, 1990. 59(1): p. 129-170.
28. Cioffi, N., et al., Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005. 381(3): p. 607-616.
29. Lin, Y.S.E., et al., Inactivation of Mycobacterium avium by copper and silver ions. Water Research, 1998. 32(7): p. 1997-2000.
30. Zhang, X.Y., et al., Antibacterial Property of Cu Modified Stainless Steel by Plasma Surface Alloying. Journal of Iron and Steel Research International, 2012. 19(4): p. 75-79.
31. Xiong, J., B.F. Xu, and H.W. Ni, Antibacterial and corrosive properties of copper implanted austenitic stainless steel. International Journal of Minerals, Metallurgy and Materials, 2009. 16(3): p. 293-298.
32. Hong, I.T. and C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 393(1-2): p. 213-222.
33. Chandra, R.K. and D.H. Dayton, Trace element regulation of immunity and infection. Nutrition Research, 1982. 2(6): p. 721-733.
34. Yamamoto, A., R. Honma, and M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of biomedical materials research, 1998. 39(2): p. 331-340.
35. Yang, F.C., et al., Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Materials Chemistry and Physics, 2009. 113(1): p. 474-479.
36. Juan, L., et al., Comparison of the release behaviors of cupric ions from metallic copper and a novel composite in simulated body fluid. Journal of Biomedical materials research part B: applied biomaterials, 2008. 85(1): p. 172-179.
37. Xu, X.X., et al., Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomaterialia, 2012. 8(2): p. 886-896.
38. Van Ingelgem, Y., A. Hubin, and J. Vereecken, Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES. Electrochimica acta, 2007. 52(27): p. 7642-7650.
39. Choong, D.L., C.S. Kang, and K.S. Shin, Effect of galvanic corrosion between precipitate and matrix on corrosion behavior of As-cast magnesium-aluminum alloys. Metals and Materials, 2000. 6(4): p. 351-358.
40. Zhao, M.C., et al., Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008. 50(7): p. 1939-1953.
41. Oldfield, J.W., Electrochemical theory of galvanic corrosion. Galvanic Corrosion, 1988: p. 5-22.
42. Reclaru, L., et al., Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials, 2002. 23(16): p. 3479-3485.
43. Schneider, M., et al., Microelectrochemical investigation on aluminium–steel friction welds. Surface and Interface Analysis, 2010. 42(4): p. 281-286.
44. Song, G., et al., Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004. 46(4): p. 955-977.
45. Tober, G. and T. Meier, Korrosionsinspektion im Flugzeugbau. Materials and Corrosion, 1995. 46(7): p. 405-409.
46. Mansfeld, F., D.H. Hengstenberg, and J.V. Kenkel, Galvanic Corrosion of Al Alloys I. Effect of Dissimilar Metal. Corrosion, 1974. 30(10): p. 343-353.
47. Mansfeld, F. and E.P. Parry, Galvanic corrosion of bare and coated Al alloys coupled to stainless steel 304 or Ti-6Al-4V. Corrosion Science, 1973. 13(8): p. 605-621.
48. Mansfeld, F. and J.V. Kenkel, Galvanic corrosion of A1 alloys—II. Effect of solution composition. Corrosion Science, 1975. 15(3): p. 183-198.
49. Mansfeld, F. and J.V. Kenkel, Galvanic corrosion of Al alloys—III. The effect of area ratio. Corrosion Science, 1975. 15(4): p. 239-250.
50. Campestrini, P., et al., Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique. Corrosion Science, 2000. 42(11): p. 1853-1861.
51. Tsai, W.T. and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel. Corrosion Science, 2007. 49(9): p. 3659-3668.
52. Collazo, A., X.R. Nóvoa, and C. Perez, Corrosion behaviour of cermet coatings in artificial seawater. Electrochimica acta, 1999. 44(24): p. 4289-4296.
53. Ahmad., Z., Principles of corrosion engineering and corrosion control2006: Butterworth-Heinemann.
54. Bard, A.J., et al., Encyclopedia of Electrochemistry volume 3: Instrumentation and Electroanalytical Chemistry2003: Wiley-VCH.
55. Kaesche, H., Corrosion of metals: physicochemical principles and current problems2003: Springer.
56. Tostmann, K.H., Korrosion: Ursachen und Vermeidung2001: John Wiley & Sons.
57. Copper Dvelopment of Asociation INC. http://www.copper.org/applications/marine/cuni/txt_sea_water_system_design.html.
58. Li, W. and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior. Acta materialia, 2006. 54(2): p. 445-452.
59. Solutions, E.M., http://www.emsclad.com/.
60. Lockyer, S.A. and F.W. Noble, Precipitate structure in a Cu-Ni-Si alloy. Journal of materials science, 1994. 29(1): p. 218-226.
61. Japanese Standards Association. (2000) Antimicrobial products-Test for antimicrobial activity and efficacy, Japanese Industrial Standard JIS Z 2801, Reference number: JIS Z 2801: 2000 (E), First English edition published in 2001.
62. Ren, L., et al., Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science and Engineering: C, 2012. 32(5): p. 1204-1209.
63. Rosales-Leal, J.I., et al., Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and surfaces A: Physicochemical and Engineering aspects, 2010. 365(1): p. 222-229.
64. Verdian, M.M., K. Raeissi, and M. Salehi, Processing and electrochemical characterization of Ni2Si intermetallic compound produced by vacuum sintering. Vacuum, 2013. 90: p. 1-5.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *