|
1. Matucha, K.H., Structure and properties of nonferrous alloys. Vol. 8. 1996: VCH. 2. Laurin, D. and J. Stupar, Antimicrobial compositions, 1986, Google Patents. 3. Zhao, D.M., J. Zhou, and N. Liu, Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied clay science, 2006. 33(3): p. 161-170. 4. Michels, H.T., et al., Copper alloys for human infectious disease control. Stainless Steel, 2005. 77000(55.0): p. 27.0. 5. Dan, Z.G., et al., Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions. Thin Solid Films, 2005. 492(1-2): p. 93-100. 6. Barrett, C.R., J.L. Lytton, and O.D. Sherby, Effet of grain size and annealing treatment on strady-state creep of copper. Transactions of the Metallurgical Society of Aime, 1967. 239(2): p. 170. 7. Syrett, B.C., Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments-a literature review. Corrosion, 1976. 32(6): p. 242-252. 8. Heidenau, F., et al., A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. Journal of Materials Science: Materials in Medicine, 2005. 16(10): p. 883-888. 9. Wan, Y.Z., et al., Surface modification of medical metals by ion implantation of silver and copper. Vacuum, 2007. 81(9): p. 1114-1118. 10. Sunada, K., et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 1998. 32(5): p. 726-728. 11. Yang, L., et al., Excellent antimicrobial properties of mesoporous anatase TiO 2 and Ag/TiO2composite films. Microporous and Mesoporous Materials, 2008. 114(1): p. 431-439. 12. Zhang, X.Y., et al., Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel. Applied Surface Science, 2011. 258(4): p. 1399-1404. 13. Zhang, Z.X., G. Lin, and Z. Xu, Effects of light pre-deformation on pitting corrosion resistance of copper-bearing ferrite antibacterial stainless steel. Journal of materials processing technology, 2008. 205(1): p. 419-424. 14. Silver, S., Bacterial resistances to toxic metal ions-a review. Gene, 1996. 179(1): p. 9-19. 15. US Environmental Protection Agency. (2008) EPA registers copper-containing alloy products. EPA official website: www.epa.gov/pesticides/factsheets/copper-alloy-products.htm. 16. Noyce, J.O., H. Michels, and C.W. Keevil, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant< i> Staphylococcus aureus in the healthcare environment. Journal of Hospital Infection, 2006. 63(3): p. 289-297. 17. Noyce, J.O., H. Michels, and C.W. Keevil, Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Applied and environmental microbiology, 2006. 72(6): p. 4239-4244. 18. Noyce, J.O., H. Michels, and C.W. Keevil, Inactivation of influenza A virus on copper versus stainless steel surfaces. Applied and environmental microbiology, 2007. 73(8): p. 2748-2750. 19. Michels, H.T., J.O. Noyce, and C.W. Keevil, Effects of temperature and humidity on the efficacy of methicillin‐resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Letters in applied microbiology, 2009. 49(2): p. 191-195. 20. Association, I.C., http://www.antimicrobialcopper.com/uk/scientific-proof/antimicrobial-efficacy.aspx. 21. 林坤毅, et al., 銅合金之抗菌性能研究. 22. Kenneth Todar, P., The Growth of Bacterial Populations (page 3) http://textbookofbacteriology.net/growth_3.html 23. Santo, C.E., D. Quaranta, and G. Grass, Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen, 2012. 1(1): p. 46-52. 24. Trevors, J.T. and C.M. Cotter, Copper toxicity and uptake in microorganisms. Journal of industrial microbiology, 1990. 6(2): p. 77-84. 25. Liu, P., et al., Study on biological effect of La3+ on Escherichia coli by atomic force microscopy. Journal of inorganic biochemistry, 2004. 98(1): p. 68-72. 26. Nan, L., et al., Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. Journal of Materials Science: Materials in Medicine, 2008. 19(9): p. 3057-3062. 27. Raetz and R.H. Christian, Biochemistry of endotoxins. Annual review of biochemistry, 1990. 59(1): p. 129-170. 28. Cioffi, N., et al., Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005. 381(3): p. 607-616. 29. Lin, Y.S.E., et al., Inactivation of Mycobacterium avium by copper and silver ions. Water Research, 1998. 32(7): p. 1997-2000. 30. Zhang, X.Y., et al., Antibacterial Property of Cu Modified Stainless Steel by Plasma Surface Alloying. Journal of Iron and Steel Research International, 2012. 19(4): p. 75-79. 31. Xiong, J., B.F. Xu, and H.W. Ni, Antibacterial and corrosive properties of copper implanted austenitic stainless steel. International Journal of Minerals, Metallurgy and Materials, 2009. 16(3): p. 293-298. 32. Hong, I.T. and C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 393(1-2): p. 213-222. 33. Chandra, R.K. and D.H. Dayton, Trace element regulation of immunity and infection. Nutrition Research, 1982. 2(6): p. 721-733. 34. Yamamoto, A., R. Honma, and M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of biomedical materials research, 1998. 39(2): p. 331-340. 35. Yang, F.C., et al., Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Materials Chemistry and Physics, 2009. 113(1): p. 474-479. 36. Juan, L., et al., Comparison of the release behaviors of cupric ions from metallic copper and a novel composite in simulated body fluid. Journal of Biomedical materials research part B: applied biomaterials, 2008. 85(1): p. 172-179. 37. Xu, X.X., et al., Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomaterialia, 2012. 8(2): p. 886-896. 38. Van Ingelgem, Y., A. Hubin, and J. Vereecken, Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES. Electrochimica acta, 2007. 52(27): p. 7642-7650. 39. Choong, D.L., C.S. Kang, and K.S. Shin, Effect of galvanic corrosion between precipitate and matrix on corrosion behavior of As-cast magnesium-aluminum alloys. Metals and Materials, 2000. 6(4): p. 351-358. 40. Zhao, M.C., et al., Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008. 50(7): p. 1939-1953. 41. Oldfield, J.W., Electrochemical theory of galvanic corrosion. Galvanic Corrosion, 1988: p. 5-22. 42. Reclaru, L., et al., Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials, 2002. 23(16): p. 3479-3485. 43. Schneider, M., et al., Microelectrochemical investigation on aluminium–steel friction welds. Surface and Interface Analysis, 2010. 42(4): p. 281-286. 44. Song, G., et al., Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 2004. 46(4): p. 955-977. 45. Tober, G. and T. Meier, Korrosionsinspektion im Flugzeugbau. Materials and Corrosion, 1995. 46(7): p. 405-409. 46. Mansfeld, F., D.H. Hengstenberg, and J.V. Kenkel, Galvanic Corrosion of Al Alloys I. Effect of Dissimilar Metal. Corrosion, 1974. 30(10): p. 343-353. 47. Mansfeld, F. and E.P. Parry, Galvanic corrosion of bare and coated Al alloys coupled to stainless steel 304 or Ti-6Al-4V. Corrosion Science, 1973. 13(8): p. 605-621. 48. Mansfeld, F. and J.V. Kenkel, Galvanic corrosion of A1 alloys—II. Effect of solution composition. Corrosion Science, 1975. 15(3): p. 183-198. 49. Mansfeld, F. and J.V. Kenkel, Galvanic corrosion of Al alloys—III. The effect of area ratio. Corrosion Science, 1975. 15(4): p. 239-250. 50. Campestrini, P., et al., Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique. Corrosion Science, 2000. 42(11): p. 1853-1861. 51. Tsai, W.T. and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel. Corrosion Science, 2007. 49(9): p. 3659-3668. 52. Collazo, A., X.R. Nóvoa, and C. Perez, Corrosion behaviour of cermet coatings in artificial seawater. Electrochimica acta, 1999. 44(24): p. 4289-4296. 53. Ahmad., Z., Principles of corrosion engineering and corrosion control2006: Butterworth-Heinemann. 54. Bard, A.J., et al., Encyclopedia of Electrochemistry volume 3: Instrumentation and Electroanalytical Chemistry2003: Wiley-VCH. 55. Kaesche, H., Corrosion of metals: physicochemical principles and current problems2003: Springer. 56. Tostmann, K.H., Korrosion: Ursachen und Vermeidung2001: John Wiley & Sons. 57. Copper Dvelopment of Asociation INC. http://www.copper.org/applications/marine/cuni/txt_sea_water_system_design.html. 58. Li, W. and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior. Acta materialia, 2006. 54(2): p. 445-452. 59. Solutions, E.M., http://www.emsclad.com/. 60. Lockyer, S.A. and F.W. Noble, Precipitate structure in a Cu-Ni-Si alloy. Journal of materials science, 1994. 29(1): p. 218-226. 61. Japanese Standards Association. (2000) Antimicrobial products-Test for antimicrobial activity and efficacy, Japanese Industrial Standard JIS Z 2801, Reference number: JIS Z 2801: 2000 (E), First English edition published in 2001. 62. Ren, L., et al., Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science and Engineering: C, 2012. 32(5): p. 1204-1209. 63. Rosales-Leal, J.I., et al., Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and surfaces A: Physicochemical and Engineering aspects, 2010. 365(1): p. 222-229. 64. Verdian, M.M., K. Raeissi, and M. Salehi, Processing and electrochemical characterization of Ni2Si intermetallic compound produced by vacuum sintering. Vacuum, 2013. 90: p. 1-5.
|