帳號:guest(18.218.163.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂易昇
作者(外文):Lu, Yi Sheng
論文名稱(中文):超音波震盪攪拌及電鍍液添加劑對電鍍銅膜微結構與機械特性影響之研究
論文名稱(外文):Effects of ultrasonic agitation and electrolyte additives on microstructure and mechanical property of electroplated Cu films
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):蔡哲正
陳智
口試委員(外文):Tsai, Cho-Jen
Chen, Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031597
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:49
中文關鍵詞:直流電鍍超音波添加劑奈米雙晶
外文關鍵詞:electroplatingultrasoundadditivenanotwin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在電子元件製程中,填入銅金屬導線的主要方式為電鍍法。然而,複雜的元件結構使金屬導線存在應力集中的問題,進而導致元件失效。為改善此問題,具有高機械強度以及良好導電性的奈米雙晶銅結構,成為近年來被廣泛研究的主題。奈米雙晶銅常見的製備方式是脈衝電鍍法,可藉由電鍍製程參數調控雙晶間距,但其具有低鍍率的缺點。因此如何透過電鍍製程參數的調控,在銅導線中有效導入奈米雙晶結構,是一個值得研究的課題。本研究使用直流電鍍法製備銅薄膜,探討超音波震盪製程和電鍍液中的酒石酸添加劑對電鍍銅鍍膜微結構及其機械性質的影響。透過掃瞄式電子顯微鏡及聚焦離子束系統分別觀測銅薄膜的表面形貌及橫截面影像,發現超音波震盪製程或是添加酒石酸在電鍍液中皆使薄膜中晶粒尺寸有增大的趨勢。X光結晶繞射實驗結果則顯示銅薄膜擁有較高的(111)晶面優選方向,此外奈米雙晶結構傾向在較厚鍍膜中生成。此奈米雙晶結構可有效提升銅電鍍膜層之硬度。根據實驗結果推論超音波震盪處理可以降低電鍍過程中離子擴散層的厚度,促進還原電極表面的原子表面擴散速度,降低過電位(overpotential),增加原子層狀成長的機會; 而電鍍液添加劑則會吸附在還原電極表面,減少成核位置與數目。根據微結構觀察及奈米壓痕測試結果顯示超音波震盪製程和電鍍液添加劑將增加電鍍銅膜生成奈米雙晶的機率及薄膜的機械硬度。
Electroplating is a main-stream process used to fill the metal layer of integrated circuits. However, owing to the complication of the circuit structure, the metal layer may suffer local stress concentration, leading to device failure. Nanotwinned Cu that has high mechanical strength and good electrical conductivity is considered as an excellent interconnect material. By using the pulse-current deposition method, we are able to introduce a nanotwinning structure in Cu metallization with various twin spacing. Nonetheless, the pulse-current electrodeposition has a lower deposition rate than the direct-current one, which may not be the promising solution for industrial fabrication process in terms of run rate and cost considerations. In this study, we intend to investigate the effects of ultrasonic agitation and electrolyte additives on microstructure and mechanical property of Cu films prepared by direct-current electroplating method. Both the ultrasonic agitation and specific electrolyte additive can enhance average grain size of the electroplated Cu films according to the images obtained by scanning electron microscopy and focused ion beam system. The x-ray diffraction results show that the Cu films prepared with ultrasonic agitation and electrolyte additive have enhanced (111)-oriented film texture. In an electroplating process with ultrasonic agitation, a two-dimensional layer growth mechanism prevails owing to the reduced diffusion layer thickness and overpotential together with the enhanced surface diffusion of Cu adatoms. The function of electrolyte additive adsorbed on the cathode surface may decrease the available nucleation sites and enhance the two-dimensional growth as well. Based on the microstructure inspection and nano-indentation measurements, ultrasonic agitation and appropriate electrolyte additive can raise the possibility of forming dense nanotwinning structure and increase the hardness of electroplated Cu films.
目錄
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章、緒論 1
1.1 背景簡介 1
1.2 研究動機 2
第二章、文獻回顧 3
2.1奈米雙晶電鍍銅膜之製程與生成機制 3
2.2超音波震盪攪拌電鍍製程 6
2.2.1超音波對溶液環境擾動之原理及特性 7
2.2.2超音波震盪攪拌對電鍍製程電化學特性之影響 10
2.2.3超音波震盪攪拌對電鍍鍍膜性質之影響 13
2.3添加劑對電鍍膜性質影響 14
第三章、實驗步驟 18
3.1電鍍種子層製備 18
3.1.1電子束蒸鍍種子層 18
3.1.2磁控濺鍍種子層 20
3.2電鍍製程條件 21
3.3銅膜微結構與性質分析 23
3.3.1 α-step 薄膜厚度輪廓 2
3.3.2 X光繞射分析儀 23
3.3.3 FE-SEM 冷場發射掃描式電子顯微鏡 23
3.3.4 FIB離子束聚焦顯微鏡 23
3.3.5奈米壓痕儀 24
第四章、結果與討論 25
4.1電鍍製程參數對電鍍銅膜微結構與性質之影響 25
4.1.1鍍膜表面形貌、橫截面微結構及晶粒尺寸 25
4.1.2鍍膜成長方向 29
4.1.3鍍膜雙晶結構與機械性質 30
4.2電鍍銅膜成長機制探討 32
4.2.1超音波擾動與酒石酸添加對鍍膜晶粒尺寸變化 32
4.2.2超音波擾動與酒石酸添加對鍍膜成長方向變化 36
4.2.3超音波擾動與酒石酸添加對鍍膜雙晶結構生成之影響 41
第五章、結論與未來發展 45
5.1結論 45
5.2未來發展 45
[1] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu , Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422 (2004).
[2] K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 321, 1066 (2008).
[3] H. Y. Hsiao, C. M. Liu, H.W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper, Science 336, 1007 (2012).
[4] C. T. Walker, R. Walker, Hardening effect of ultrasonic agitation on copper electrodeposits, J. Electrochem. Soc, 124, 661 (1977).
[5] B. Hong, C. H. Jiang and X. J. Wang, Effects of ultrasound on morphology of copper electrodeposited on titanium in aqueous and organic solutions, Mater. Trans., JIM 49, 275 (2008).
[6] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, Damascene copper electroplating for chip interconnections, IBM J. Res .Dev 42, 567 (1998).
[7] L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323, 607 (2009).
[8] X. H. Chen, L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, J. Appl. Phys., 102 083708 (2007).
[9] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K. N. Tu, Nanotwin
formation in copper thin films by stress/strain relaxation in pulse electrodeposition, Appl. Phys. Lett., 91, 254105 (2007).
[10] D. Xu, V. Sriram, V. Ozolins, J. M.Yang, K. N. Tu, G. R. Stafford, and C. Beauchamp, In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper, J. Appl. Phys., 105 023521 (2009).
[11] O. E. Kongstein, U. Bertocci and G. R. Stafford, In situ stress measurements during copper electrodeposition on (111)-textured Au, J. Electrochem. Soc, 152, C116 (2005).
[12] K. S. Suslick, Ultrasound: Its chemical, physical, and biological effects. (VCH, New York, (1988).
[13] T. Leong, M. Ashokkumar and S. Kentish, The fundamentals of power ultrasound- a review, Acoust Aust, 39, 54 (2011).
[14] E. B. Flint, K. S. Suslick, The temperature of cavitation, Science, 253, 1397 (1991).
[15] E. Maisonhaute, C. Prado, P. C. White and R. G. Compton, Surface acoustic cavitation understood via nanosecond lectrochemistry. part III: shear stress in ultrasonic cleaning, Ultrason. Sonochem., 9, 297 (2002).
[16] R. Dijkink, C. D. Ohl, Measurement of cavitation induced wall shear stress, Appl. Phys. Lett. 93, 254107 (2008).
[17] M. S. Plesset, R. B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, J. Fluid Mech., 47, 283 (1971).
[18] W. Gaertner, Frequency dependence of ultrasonic cavitation, J. Acoust. Soc. Am, 26, 977 (1954).
[19] W. Lauterborn, A. Vogel, Modern optical techniques in fluid mechanics, Ann. Rev. Fluid Mech., 16, 223 (1984)
[20] L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34, 94 (1917).
[21] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2/E, (A John Wiley & SONS, Inc, (2006).
[22] W. R. Wolfe, H. Ctiessin, E. Yeager, and F. Hovorka, The effect of ultrasonic waves on the electrodeposition of copper, J. Electrochem. Soc., 101, 590 (1954).
[23] A. Mallik, B. C. Ray, Implication of low temperature and sonication on electrocrystallization mechanism of cu thin films: a kinetics and structural correlation, Mat. Res.,16, 539 (2013).
[24] R. G. Compton, J. C. Eklund, F. Marken, T. O. Rebbitt, R. P. Akkermans and D. N. Waller, Dual activation: coupling ultrasound electrochemistry-an overview Electrochim. Acta., 42, 2919 (1997).
[25] D. Chen, S. K. Sharma and A. Mudhoo , Handbook on applications of ultrasound: sonochemistry for sustainability, (CRC Press, 2011).
[26] C. T. Walker, R. Walker, Effect of ultrasonic agitation on some properties of electrodeposits, Electrodepos. Surface Treat.,1, 457 (1973).
[27] C. T. Walker, R. Walker, Hardening of immersed metals by ultrasound, Nature, 250, 410 (1974).
[28] R. Cui, Y. T. He, Z. M. Yu, W. J. Shu and J.Q. Du, Preparation and characterization of ultrasonic electrodeposited copper coating, ICEPT (2010).
[29] V.M. Kozlov, L. P. Bicelli, Texture formation of electrodeposited fcc metals, Mater. Chem. Phys., 77, 289 (2002).
[30] L. Oniciu, L. Muresan, Some fundamental aspects of levelling and brightening in metal electrodeposition, J. Appl. Electrochem., 21, 565 (1991).
[31] H. Natter, R. Hempelmann, Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH, J. Phys. Chem., 100, 19525 (1996).
[32] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, (Wiley Interscience, USA, (2006).
[33] S.M. Barlow, R. Raval, Complex organic molecules at metal surfaces:
bonding, organisation and chirality, Surf. Sci. Rep., 50, 201 (2003).
[34] D.Grujicic, B. Pesic, Electrodeposition of copper-the nucleation mechanisms. Electrochimica Acta, 47, 2901 (2002).
[35] B. Hong, C. H. Jiang, and X. J. Wang, Influence of complexing agents on texture formation of electrodeposited copper, Surf. Coat. Tech., 201, 7449 (2007).
[36] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, Wiley Interscience, USA, (2006)
[37] K. Abe, Y. Harada, M. Yoshimaru, H. Onoda, Texture and electromigration performance in damascene interconnects formed by reflow sputtered Cu film, J. Vac. Sci. Technol. B22, 721(2004)
[38] 胡啟章,電化學原理與方法,2版,(五南出版社,2011).
[39] N. A. Pangarov, Preferred orientations in electro-deposited metals, J. Electroanal. Chem., 9, 70 (1965).
[40] B. S. Schueller, R. T. Yang, Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin, Ind. Eng. Chem. Res., 40, 4912 (2001).
[41] K. Kremmer, O. Yezerska, G. Schreiber, M. Masimov, V. Klemm, M. Schneider and D. Rafaja, Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films. Thin Solid Films, 515, 6698 (2007).
[42] C. N. Liao, Y. C. Lu and D. Xu, Modulation of crystallographic texture and twinning structure of cu nanowires by electrodeposition, J. Electrochem. Soc, 160, D207 (2013).
[43] Y. J. Han, X. Zhang, and G. W. Leach, Shape control of electrodeposited copper films and nanostructures through additive effects, Langmuir, 30, 3589 (2014).
[44] S. Vollmer, G. Witte and C. Wöll, Determination of site specific adsorption energies of CO on copper, Catal. Lett., 77, 97 (2001).
[45] L. Vitos, A.V. Ruban, H. L. Skriver and J. Kolla´r, The surface energy of metals, Surface Science, 411, 186 (1998).
[46] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H.Hahn and T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition, Small, 5, 2265 (2009).
[47] X. W. Zhou, H. N. G. Wadley, Twin formation during the atomic deposition of copper, Acta Mater., 47, 1063 (1999).
[48] B. Vyas, and C. M. Preece. Stress produced in a solid by cavitation, J. Appl. Phys., 47,12 (1976)
[49] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990)
[50] O. Anderoglu, A. Misra, F. Ronning, H. Wang and X. Zhang, Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films, J. Appl. Phys., 106, 024313 (2009)
[51] Allen J. Bard Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley, USA, (2000)
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *