|
[1] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu , Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422 (2004). [2] K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 321, 1066 (2008). [3] H. Y. Hsiao, C. M. Liu, H.W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper, Science 336, 1007 (2012). [4] C. T. Walker, R. Walker, Hardening effect of ultrasonic agitation on copper electrodeposits, J. Electrochem. Soc, 124, 661 (1977). [5] B. Hong, C. H. Jiang and X. J. Wang, Effects of ultrasound on morphology of copper electrodeposited on titanium in aqueous and organic solutions, Mater. Trans., JIM 49, 275 (2008). [6] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, Damascene copper electroplating for chip interconnections, IBM J. Res .Dev 42, 567 (1998). [7] L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the maximum strength in nanotwinned copper, Science, 323, 607 (2009). [8] X. H. Chen, L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, J. Appl. Phys., 102 083708 (2007). [9] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition, Appl. Phys. Lett., 91, 254105 (2007). [10] D. Xu, V. Sriram, V. Ozolins, J. M.Yang, K. N. Tu, G. R. Stafford, and C. Beauchamp, In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper, J. Appl. Phys., 105 023521 (2009). [11] O. E. Kongstein, U. Bertocci and G. R. Stafford, In situ stress measurements during copper electrodeposition on (111)-textured Au, J. Electrochem. Soc, 152, C116 (2005). [12] K. S. Suslick, Ultrasound: Its chemical, physical, and biological effects. (VCH, New York, (1988). [13] T. Leong, M. Ashokkumar and S. Kentish, The fundamentals of power ultrasound- a review, Acoust Aust, 39, 54 (2011). [14] E. B. Flint, K. S. Suslick, The temperature of cavitation, Science, 253, 1397 (1991). [15] E. Maisonhaute, C. Prado, P. C. White and R. G. Compton, Surface acoustic cavitation understood via nanosecond lectrochemistry. part III: shear stress in ultrasonic cleaning, Ultrason. Sonochem., 9, 297 (2002). [16] R. Dijkink, C. D. Ohl, Measurement of cavitation induced wall shear stress, Appl. Phys. Lett. 93, 254107 (2008). [17] M. S. Plesset, R. B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, J. Fluid Mech., 47, 283 (1971). [18] W. Gaertner, Frequency dependence of ultrasonic cavitation, J. Acoust. Soc. Am, 26, 977 (1954). [19] W. Lauterborn, A. Vogel, Modern optical techniques in fluid mechanics, Ann. Rev. Fluid Mech., 16, 223 (1984) [20] L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34, 94 (1917). [21] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, 2/E, (A John Wiley & SONS, Inc, (2006). [22] W. R. Wolfe, H. Ctiessin, E. Yeager, and F. Hovorka, The effect of ultrasonic waves on the electrodeposition of copper, J. Electrochem. Soc., 101, 590 (1954). [23] A. Mallik, B. C. Ray, Implication of low temperature and sonication on electrocrystallization mechanism of cu thin films: a kinetics and structural correlation, Mat. Res.,16, 539 (2013). [24] R. G. Compton, J. C. Eklund, F. Marken, T. O. Rebbitt, R. P. Akkermans and D. N. Waller, Dual activation: coupling ultrasound electrochemistry-an overview Electrochim. Acta., 42, 2919 (1997). [25] D. Chen, S. K. Sharma and A. Mudhoo , Handbook on applications of ultrasound: sonochemistry for sustainability, (CRC Press, 2011). [26] C. T. Walker, R. Walker, Effect of ultrasonic agitation on some properties of electrodeposits, Electrodepos. Surface Treat.,1, 457 (1973). [27] C. T. Walker, R. Walker, Hardening of immersed metals by ultrasound, Nature, 250, 410 (1974). [28] R. Cui, Y. T. He, Z. M. Yu, W. J. Shu and J.Q. Du, Preparation and characterization of ultrasonic electrodeposited copper coating, ICEPT (2010). [29] V.M. Kozlov, L. P. Bicelli, Texture formation of electrodeposited fcc metals, Mater. Chem. Phys., 77, 289 (2002). [30] L. Oniciu, L. Muresan, Some fundamental aspects of levelling and brightening in metal electrodeposition, J. Appl. Electrochem., 21, 565 (1991). [31] H. Natter, R. Hempelmann, Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH, J. Phys. Chem., 100, 19525 (1996). [32] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, (Wiley Interscience, USA, (2006). [33] S.M. Barlow, R. Raval, Complex organic molecules at metal surfaces: bonding, organisation and chirality, Surf. Sci. Rep., 50, 201 (2003). [34] D.Grujicic, B. Pesic, Electrodeposition of copper-the nucleation mechanisms. Electrochimica Acta, 47, 2901 (2002). [35] B. Hong, C. H. Jiang, and X. J. Wang, Influence of complexing agents on texture formation of electrodeposited copper, Surf. Coat. Tech., 201, 7449 (2007). [36] M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, Wiley Interscience, USA, (2006) [37] K. Abe, Y. Harada, M. Yoshimaru, H. Onoda, Texture and electromigration performance in damascene interconnects formed by reflow sputtered Cu film, J. Vac. Sci. Technol. B22, 721(2004) [38] 胡啟章,電化學原理與方法,2版,(五南出版社,2011). [39] N. A. Pangarov, Preferred orientations in electro-deposited metals, J. Electroanal. Chem., 9, 70 (1965). [40] B. S. Schueller, R. T. Yang, Ultrasound enhanced adsorption and desorption of phenol on activated carbon and polymeric resin, Ind. Eng. Chem. Res., 40, 4912 (2001). [41] K. Kremmer, O. Yezerska, G. Schreiber, M. Masimov, V. Klemm, M. Schneider and D. Rafaja, Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films. Thin Solid Films, 515, 6698 (2007). [42] C. N. Liao, Y. C. Lu and D. Xu, Modulation of crystallographic texture and twinning structure of cu nanowires by electrodeposition, J. Electrochem. Soc, 160, D207 (2013). [43] Y. J. Han, X. Zhang, and G. W. Leach, Shape control of electrodeposited copper films and nanostructures through additive effects, Langmuir, 30, 3589 (2014). [44] S. Vollmer, G. Witte and C. Wöll, Determination of site specific adsorption energies of CO on copper, Catal. Lett., 77, 97 (2001). [45] L. Vitos, A.V. Ruban, H. L. Skriver and J. Kolla´r, The surface energy of metals, Surface Science, 411, 186 (1998). [46] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H.Hahn and T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition, Small, 5, 2265 (2009). [47] X. W. Zhou, H. N. G. Wadley, Twin formation during the atomic deposition of copper, Acta Mater., 47, 1063 (1999). [48] B. Vyas, and C. M. Preece. Stress produced in a solid by cavitation, J. Appl. Phys., 47,12 (1976) [49] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) [50] O. Anderoglu, A. Misra, F. Ronning, H. Wang and X. Zhang, Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films, J. Appl. Phys., 106, 024313 (2009) [51] Allen J. Bard Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley, USA, (2000)
|