帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林建輝
論文名稱(中文):藉由介電質環形超穎材料達到隱形斗篷的效果
論文名稱(外文):Achieving Harry Potter's Invisible Cloak by Dielectric Annulus Based Metamaterial
指導教授(中文):嚴大任
口試委員(中文):黃國威
陳浩夫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031590
出版年(民國):103
畢業學年度:103
語文別:英文中文
論文頁數:79
中文關鍵詞:超穎材料隱形斗篷
相關次數:
  • 推薦推薦:0
  • 點閱點閱:164
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在2006年和2009年,兩個研究團隊分別提出了兩種隱形斗蓬裝置 - internal cloak 以及 external cloak,這兩種裝置都能夠使物體達到隱形的效果,然而他們各自也都會受到一些使用上的限制。舉例來說,internal cloak的工作原理是將電磁波偏折而繞過中心的隱藏區域,因此在裝置內被隱藏的物體無法與外界交換任何的訊號而變得如同盲人一般;另一方面,external cloak應用了散射場抵銷(scattering cancelation)的概念,因此需要客製化的設計,同時被隱藏物體的移動也被有所限制。
在本論文中,我們期望能夠設計出一種非常類似於小說中哈利波特的隱形斗篷的隱形裝置;確切地說,此種隱形裝置不需要客製化即能夠隱藏任意的物體,同時隱藏物體的視覺以及移動不會受到此隱形裝置的限制。
首先,我們利用有限元素分析法進行模擬以驗證提出的理論,其模擬結果與理論預測相當吻合,但是由於在現實中沒有材料可以達到理論所提出的連續的本構參數(constitutive parameters),因此,為了設計出能夠實際應用的裝置,我們再次利用有限元素分析法模擬找出將裝置分層的最佳方式,並且利用有限積分法模擬以設計裝置中各個區域的本構參數,最後的模擬結果驗證了我們所提出的介電環超穎材料隱形斗蓬裝置。
最後,為了以實驗驗證模擬的結果,我們以氧化鋯圓環組成隱形裝置的結構,為了測試其電磁波特性,我們架設了平面波導裝置並且將隱形斗篷置於平面波導之中,接著量測電磁波在平面波導的分佈做出場圖。實驗量測的結果與模擬十分接近,但是由於實際的量測會受到試片公差或是邊界條件的誤差這些因素的影響,因此在場途中我們仍然會在隱形斗篷的周圍發現少許的散射場;然而我們認為一旦實驗中的條件能夠完全符合模擬中的設定時,我們即能夠達到相當接近哈利波特隱形斗篷的隱形裝置。
摘要 i
Abstract ii
Acknowledgements iv
Contents v
List of Figures vii
List of Tables xii
Chapter 1 Introduction 1
1.1 Introduction to Metamaterials 1
1.2 Introduction to Invisible cloaking 3
1.3 Thesis organization 4
Chapter 2 Literature Review 6
2.1 Transformation optics 6
2.2 Internal cloak 9
2.2.1 Theoretical Analysis of the perfect cylindrical cloak 9
2.2.2 Simplification of Material Parameters 11
2.2.3 Simulations and Experimental Verifications of the Internal Cloak 12
2.3 External cloak 15
2.3.1 Complementary Media and Superlens 15
2.3.2 Theoretical analysis of the external cloak 18
2.4 Other cloaks based on transformation optics 24
Chapter 3 Design and Simulation 30
3.1 Introduction 30
3.2 Harry Potter's Invisible Cloak 31
3.2.1 Theoretical Analysis and Simulations of the proposed Cloak 31
3.2.2 An Illusion Device based on Proposed Cloak 40
3.3 Numerical Simulation to Stratify the Cloak 42
3.3.1 Stratification of the Cloak by FEM Simulations 42
3.3.2 The Cloak Based on Dielectric Cuboid Metamaterials 47
3.3.3 The Cloak based on Dielectric Annulus Metamaterials 52
3.4 Summary 57
Chapter 4 Measurement and Discussion 59
4.1 Construction of the Cloak Structure 59
4.2 Measurement Setup 63
4.3 Result and Discussion 66
4.3.1 Measurement Results and Field Maps for Different Cases 66
4.3.2 Summary 73
Chapter 5 Conclusion 75
Reference 76
1. V. G. Veselago, "Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu," Sov Phys Uspekhi 10, 509-& (1968).
2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
3. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Physical Review E 71 (2005).
4. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
6. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Physical Review E 74 (2006).
7. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt Express 15, 11133-11141 (2007).
8. D. P. Gaillot, C. Croenne, and D. Lippens, "An all-dielectric route for terahertz cloaking," Opt Express 16, 3986-3992 (2008).
9. Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Physical Review Letters 102 (2009).
10. X. H. Wang, F. Chen, S. Hook, and E. Semouchkina, "Microwave Cloaking by All-Dielectric Metamaterials," 2011 Ieee International Symposium on Antennas and Propagation (Apsursi), 2872-2874 (2011).
11. D. H. Kwon, and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J Phys 10 (2008).
12. S. Xi, H. Chen, B.-I. Wu, and J.-A. Kong, "One-Directional Perfect Cloak Created With Homogeneous Material," Microwave and Wireless Components Letters, IEEE 19, 131-133 (2009).
13. H. Chen, and B. Zheng, "Broadband polygonal invisibility cloak for visible light," Scientific reports 2, 255 (2012).
14. N. Landy, and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nature materials 12, 25-28 (2013).
15. X. H. Wang, F. Chen, and E. Semouchkina, "Implementation of Low Scattering Microwave Cloaking by All-Dielectric Metamaterials," Ieee Microw Wirel Co 23, 63-65 (2013).
16. J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000).
17. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
18. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," Ieee T Microw Theory 47, 2075-2084 (1999).
19. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters 76, 4773-4776 (1996).
20. M. Lax, and D. F. Nelson, "Maxwell Equations in Material Form," Phys Rev B 13, 1777-1784 (1976).
21. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt Express 14, 9794-9804 (2006).
22. G. W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J Phys 8 (2006).
23. U. Leonhardt, and T. G. Philbin, "Transformation Optics and the Geometry of Light," Prog Optics 53, 69-152 (2009).
24. W. Wang, L. Lin, X. F. Yang, J. H. Cui, C. L. Du, and X. G. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt Express 16, 8094-8105 (2008).
25. H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, "Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies," Physical Review Letters 102 (2009).
26. H. Y. Chen, and C. T. Chan, "Transformation media that rotate electromagnetic fields," Applied Physics Letters 90 (2007).
27. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonic Nanostruct 6, 87-95 (2008).
28. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, "Superscatterer: Enhancement of scattering with complementary media," Opt Express 16, 18545-18550 (2008).
29. X. F. Zang, and C. Jiang, "Two-dimensional elliptical electromagnetic superscatterer and superabsorber," Opt Express 18, 6891-6899 (2010).
30. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007).
31. T. Philbin, "Cloaking at a distance," Physics 2 (2009).
32. P. Alitalo, and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Mater Today 12, 22-29 (2009).
33. J. J. Yang, M. Huang, C. F. Yang, and J. Yu, "Reciprocal invisibility cloak based on complementary media," The European Physical Journal D 61, 731-736 (2011).
34. T.-Y. Huang, H.-C. Lee, I.-W. Un, and T.-J. Yen, "An innovative cloak enables arbitrary multi-objects hidden with visions and movements," Applied Physics Letters 101, 151901 (2012).
35. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature communications 4, 2652 (2013).
36. H. Chen, C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature materials 9, 387-396 (2010).
37. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature materials 8, 568-571 (2009).
38. R. F. Wang, Z. L. Mei, and T. J. Cui, "A carpet cloak for static magnetic field," Applied Physics Letters 102 (2013).
39. M. Gharghi, C. Gladden, T. Zentgraf, Y. M. Liu, X. B. Yin, J. Valentine, and X. Zhang, "A Carpet Cloak for Visible Light," Nano Lett 11, 2825-2828 (2011).
40. M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, "Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime," Applied Physics Letters 100 (2012).
41. X. F. Xu, Y. J. Feng, Y. Hao, J. M. Zhao, and T. Jiang, "Infrared carpet cloak designed with uniform silicon grating structure," Applied Physics Letters 95 (2009).
42. C. A. Valagiannopoulos, and P. Alitalo, "Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings," Phys Rev B 85 (2012).
43. F. G. Vasquez, G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Opt Express 17, 14800-14805 (2009).
44. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 323, 366-369 (2009).
45. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, "The open cloak," Applied Physics Letters 94 (2009).
46. T. C. Han, X. H. Tang, and F. Xiao, "Open Cloaks Via Embedded Optical Transformation," Ieee Microw Wirel Co 20, 64-66 (2010).
47. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Physical Review Letters 102 (2009).
48. K. Kobayashi, "Complementary media of electrons," J Phys-Condens Mat 18, 3703-3720 (2006).
49. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. Chan, "Illusion Optics: The Optical Transformation of an Object into Another Object," Physical Review Letters 102 (2009).
50. J. Pendry, "OPTICS All smoke and metamaterials," Nature 460, 579-580 (2009).
51. E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, "An infrared invisibility cloak composed of glass," Applied Physics Letters 96, 233503 (2010).
52. Z. Li, X. Zang, B. Cai, C. Shi, and Y. Zhu, "Cloaks and antiobject-independent illusion optics based on illusion media," Optics Communications 308, 95-99 (2013).
53. J. S. Mei, Q. Wu, and K. Zhang, "Complementary cloak based on conventional cloak with axial symmetrical cloaked region," Appl Phys a-Mater 108, 1001-1005 (2012).
54. T. Tyc, and U. Leonhardt, "Transmutation of singularities in optical instruments," New J Phys 10 (2008).
55. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," Ieee T Antenn Propag 56, 416-424 (2008).
56. C. Li, X. Liu, G. C. Liu, F. Li, and G. Y. Fang, "Experimental demonstration of illusion optics with "external cloaking" effects," Applied Physics Letters 99 (2011).
57. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, "Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators," Physical Review Letters 98 (2007).
58. Y. J. Lai, C. K. Chen, and T. J. Yen, "Creating negative refractive identity via single-dielectric resonators," Opt Express 17, 12960-12970 (2009).
59. Q. Zhao, J. Zhou, F. L. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterials," Mater Today 12, 60-69 (2009).
60. X. Chen, T. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E 70 (2004).
61. B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt Express 14, 8694-8705 (2006).
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *