|
1. V. G. Veselago, "Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu," Sov Phys Uspekhi 10, 509-& (1968). 2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). 3. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Physical Review E 71 (2005). 4. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). 5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). 6. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Physical Review E 74 (2006). 7. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt Express 15, 11133-11141 (2007). 8. D. P. Gaillot, C. Croenne, and D. Lippens, "An all-dielectric route for terahertz cloaking," Opt Express 16, 3986-3992 (2008). 9. Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Physical Review Letters 102 (2009). 10. X. H. Wang, F. Chen, S. Hook, and E. Semouchkina, "Microwave Cloaking by All-Dielectric Metamaterials," 2011 Ieee International Symposium on Antennas and Propagation (Apsursi), 2872-2874 (2011). 11. D. H. Kwon, and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J Phys 10 (2008). 12. S. Xi, H. Chen, B.-I. Wu, and J.-A. Kong, "One-Directional Perfect Cloak Created With Homogeneous Material," Microwave and Wireless Components Letters, IEEE 19, 131-133 (2009). 13. H. Chen, and B. Zheng, "Broadband polygonal invisibility cloak for visible light," Scientific reports 2, 255 (2012). 14. N. Landy, and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nature materials 12, 25-28 (2013). 15. X. H. Wang, F. Chen, and E. Semouchkina, "Implementation of Low Scattering Microwave Cloaking by All-Dielectric Metamaterials," Ieee Microw Wirel Co 23, 63-65 (2013). 16. J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000). 17. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). 18. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," Ieee T Microw Theory 47, 2075-2084 (1999). 19. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters 76, 4773-4776 (1996). 20. M. Lax, and D. F. Nelson, "Maxwell Equations in Material Form," Phys Rev B 13, 1777-1784 (1976). 21. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt Express 14, 9794-9804 (2006). 22. G. W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J Phys 8 (2006). 23. U. Leonhardt, and T. G. Philbin, "Transformation Optics and the Geometry of Light," Prog Optics 53, 69-152 (2009). 24. W. Wang, L. Lin, X. F. Yang, J. H. Cui, C. L. Du, and X. G. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt Express 16, 8094-8105 (2008). 25. H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, "Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies," Physical Review Letters 102 (2009). 26. H. Y. Chen, and C. T. Chan, "Transformation media that rotate electromagnetic fields," Applied Physics Letters 90 (2007). 27. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonic Nanostruct 6, 87-95 (2008). 28. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, "Superscatterer: Enhancement of scattering with complementary media," Opt Express 16, 18545-18550 (2008). 29. X. F. Zang, and C. Jiang, "Two-dimensional elliptical electromagnetic superscatterer and superabsorber," Opt Express 18, 6891-6899 (2010). 30. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224-227 (2007). 31. T. Philbin, "Cloaking at a distance," Physics 2 (2009). 32. P. Alitalo, and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Mater Today 12, 22-29 (2009). 33. J. J. Yang, M. Huang, C. F. Yang, and J. Yu, "Reciprocal invisibility cloak based on complementary media," The European Physical Journal D 61, 731-736 (2011). 34. T.-Y. Huang, H.-C. Lee, I.-W. Un, and T.-J. Yen, "An innovative cloak enables arbitrary multi-objects hidden with visions and movements," Applied Physics Letters 101, 151901 (2012). 35. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature communications 4, 2652 (2013). 36. H. Chen, C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature materials 9, 387-396 (2010). 37. J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature materials 8, 568-571 (2009). 38. R. F. Wang, Z. L. Mei, and T. J. Cui, "A carpet cloak for static magnetic field," Applied Physics Letters 102 (2013). 39. M. Gharghi, C. Gladden, T. Zentgraf, Y. M. Liu, X. B. Yin, J. Valentine, and X. Zhang, "A Carpet Cloak for Visible Light," Nano Lett 11, 2825-2828 (2011). 40. M. Yin, X. Y. Tian, H. X. Han, and D. C. Li, "Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime," Applied Physics Letters 100 (2012). 41. X. F. Xu, Y. J. Feng, Y. Hao, J. M. Zhao, and T. Jiang, "Infrared carpet cloak designed with uniform silicon grating structure," Applied Physics Letters 95 (2009). 42. C. A. Valagiannopoulos, and P. Alitalo, "Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings," Phys Rev B 85 (2012). 43. F. G. Vasquez, G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Opt Express 17, 14800-14805 (2009). 44. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 323, 366-369 (2009). 45. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, "The open cloak," Applied Physics Letters 94 (2009). 46. T. C. Han, X. H. Tang, and F. Xiao, "Open Cloaks Via Embedded Optical Transformation," Ieee Microw Wirel Co 20, 64-66 (2010). 47. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Physical Review Letters 102 (2009). 48. K. Kobayashi, "Complementary media of electrons," J Phys-Condens Mat 18, 3703-3720 (2006). 49. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. Chan, "Illusion Optics: The Optical Transformation of an Object into Another Object," Physical Review Letters 102 (2009). 50. J. Pendry, "OPTICS All smoke and metamaterials," Nature 460, 579-580 (2009). 51. E. Semouchkina, D. H. Werner, G. B. Semouchkin, and C. Pantano, "An infrared invisibility cloak composed of glass," Applied Physics Letters 96, 233503 (2010). 52. Z. Li, X. Zang, B. Cai, C. Shi, and Y. Zhu, "Cloaks and antiobject-independent illusion optics based on illusion media," Optics Communications 308, 95-99 (2013). 53. J. S. Mei, Q. Wu, and K. Zhang, "Complementary cloak based on conventional cloak with axial symmetrical cloaked region," Appl Phys a-Mater 108, 1001-1005 (2012). 54. T. Tyc, and U. Leonhardt, "Transmutation of singularities in optical instruments," New J Phys 10 (2008). 55. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," Ieee T Antenn Propag 56, 416-424 (2008). 56. C. Li, X. Liu, G. C. Liu, F. Li, and G. Y. Fang, "Experimental demonstration of illusion optics with "external cloaking" effects," Applied Physics Letters 99 (2011). 57. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, "Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators," Physical Review Letters 98 (2007). 58. Y. J. Lai, C. K. Chen, and T. J. Yen, "Creating negative refractive identity via single-dielectric resonators," Opt Express 17, 12960-12970 (2009). 59. Q. Zhao, J. Zhou, F. L. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterials," Mater Today 12, 60-69 (2009). 60. X. Chen, T. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E 70 (2004). 61. B. J. Justice, J. J. Mock, L. H. Guo, A. Degiron, D. Schurig, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt Express 14, 8694-8705 (2006).
|