帳號:guest(3.131.37.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佳凌
論文名稱(中文):反應式直流磁控濺鍍法製備 (Al,Cr,Nb,Si,B,C)100-xNx 高熵薄膜之研究
論文名稱(外文):Study on High-entropy Nitride Films of (Al,Cr,Nb,Si,B,C)100-xNx by DC Reactive Magnetron Sputtering
指導教授(中文):葉均蔚
口試委員(中文):洪健龍
李勝隆
楊智超
孫道中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031585
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:208
中文關鍵詞:高熵氮化膜反應式濺鍍硬度非晶抗氧化性
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用真空電弧熔煉法製備非等莫耳Al-Cr-Nb-Si-B-C之高熵合金靶材,再以反應式直流磁控濺鍍法鍍製高熵合金氮化物之薄膜(Al-Cr-Nb-Si-B-C)N。為達到薄膜性質的提升,藉由調整製程的氮氣流率、基板偏壓來控制薄膜成長之結構,目的是希望能提升其硬度、韌性、高溫抗氧化性及熱穩定性等,並探討薄膜的成長機制,以及不同鍍膜參數對於薄膜的微結構、機械性質、附著力、磨耗性質以及抗氧化能力之影響,最後針對不同的參數所得到結果進行綜合比較,再找出最佳化的薄膜,後續則以最佳參數之氮化物硬膜鍍覆於拋棄式三角銑刀上進行304不鏽鋼的切削測試。
由實驗結果發現,在不同氮氣流率 (RN) 的條件下,高熵合金膜及高熵氮化物薄膜之晶體結構皆呈現非晶的形態,然而,施加偏壓之後,從其截面的形貌觀察,有逐漸緻密化的趨勢,而當所施加基板偏壓 (Vs) 至-200 V時,其才有FCC晶體結構出現。在調變不同的參數變量後,當RN = 50% 及 Vs = -150V時,氮化物薄膜具有最高的硬度值23 GPa及最佳的抗氧化性,而由於在此參數下呈現非晶的結構,因此薄膜中的殘留應力不大,是因為在非晶的結構下可藉由混亂的原子排列使殘留應力得以舒緩。除此之外,相較於以往之高熵合金系統,抗氧化性質有顯著的突破,在1000°C/2h的退火後其氧化層厚度僅有79 nm,而此系統具有優異的抗氧化能力歸因於其表面由緻密的Cr2O3、Al2O3、SiO2及Nb2O5所組成的五層氧化層,可以有效的避免氧原子擴散進入薄膜當中。而在附著力試驗當中,不論鍍覆於M2工具鋼或是WC-Co基板上皆以Cr為中間層的附著力效果最佳。在切削試驗當中,對304不鏽鋼進行切削時,與工業上所使用的TiN及TiAlN鍍膜相比,縱使此系統的硬度不高於TiAlN,但在抗氧化性及附著力佳的貢獻下,其切削表現與TiAlN不相上下。由此可見,本研究所開發的高熵氮化膜 (Al-Cr-Nb-Si-B-C)N在工業應用上極具潛力。
High-entropy nitride films based on high-entropy alloys have received lots of attention. They have promising potential applications as compared to conventional nitride films. In the present study, high-entropy nitride films (AlCr1.5Nb0.5SiBC0.5)Nx were designed and deposited at 400°C on Si wafers by DC reactive magnetron sputtering in the gaseous mixture Ar+N2. By the systematic variation of nitrogen flow ratio (RN) and the substrate bias (Vs), microstructure, crystal structure, hardness and oxidation resistance have been investigated.
The results of GIAXRD indicate that the films of the different nitrogen flow ratio all exhibit an amorphous structure. Furthermore, with the increasing substrate bias, the crystal structure of the films converts to FCC structure gradually. In addition, the films possess denser microstructure and increasing hardness. The film of RN= 50% and Vs = -150 V has the highest hardness 22.5 GPa and Young’s modulus 193.5 GPa. Besides, the film displays excellent oxidation resistance. After the air annealing at 1000°C for 5h, the oxide layer is only 114 nm on the surface of the coating. The reason why it has such outstanding performance is because of its two amorphous layers and dense (Cr,Al)2O3 top layer in the oxidized 6-layer structure which effectively inhibits oxygen diffusion into the film.
In adhesion test, the optimized film is deposited on M2 and WC-Co substrates. The films with 100 nm Cr-interlayer present the best adhesion property. In the cutting test, the cutting tools coated with Cr-interlayer and optimized (Al-Cr-Nb-Si-B-C)N film perform better than commercial TiN-coated inserts but similar to TiAlN-coated ones. Though the hardness of (Al-Cr-Nb-Si-B-C)N is lower than TiAlN, the great oxidation resistance offsets the lower hardness. This research demonstrates the great potential of high-entropy (Al-Cr-Nb-Si-B-C)N coating for high temperature applications.
Abstract I
摘要 III
誌謝 V
目錄 IX
圖目錄 XV
表目錄 XXIII
第一章、前言與研究目的 1
1.1 前言 1
1.2 研究目的 3
第二章、文獻回顧 6
2.1 表面鍍層的發展與研究 6
2.1.1 薄膜發展 6
2.1.2 薄膜硬化機制 13
2.1.3 氮化物硬膜發展 15
2.2 高熵合金的發展沿革 17
2.2.1 高熵合金定義 17
2.2.2 高熵合金的特點 17
2.2.3 高熵氮化膜 20
2.3 反應式直流磁控濺鍍 26
2.3.1 濺鍍原理 26
2.3.2 電漿理論 30
2.3.3 反應式濺鍍 (Reactive sputtering) 32
2.3.4 直流濺鍍 (Direct current sputtering) 33
2.3.5 磁控濺鍍 (Magnetron sputtering) 34
2.4 薄膜成長與微結構 37
2.4.1 薄膜成長機制 37
2.4.2 薄膜微結構 41
第三章、實驗步驟 46
3.1 實驗設計 46
3.2 靶材製備 48
3.3 薄膜製備 53
3.3.1 基板選擇 53
3.3.2 基板前處理 55
3.3.3 鍍製薄膜 55
3.4 薄膜基本性質分析 62
3.4.1 成分分析 62
3.4.2 晶體結構分析 63
3.4.3 表面形貌與微結構分析 63
3.4.4 鍵結分析 64
3.4.5 表面粗糙度分析 66
3.4.6 TEM微結構分析 68
3.5 電性分析 69
3.5.1 電阻率量測 69
3.6 機械性質分析 70
3.6.1 薄膜應力分析 70
3.6.2 硬度與楊氏係數分析 73
3.6.3 刮痕試驗 75
3.6.4 磨耗試驗 76
3.6.5 切削試驗 78
3.7 薄膜抗氧化性及熱穩定性分析 80
3.7.1 抗氧化性 80
3.7.2 熱穩定性 80
第四章、結果與討論 82
4.1 靶材結構與成分分析 82
4.2 氮氣流率變量 (RN) 對薄膜之影響 85
4.2.1 成分分析 85
4.2.2 晶體結構分析 87
4.2.3 鍍率分析 89
4.2.4 表面形貌與微結構分析 91
4.2.5 表面粗糙度分析 95
4.2.6 XPS鍵結分析 99
4.2.7 殘留應力分析 103
4.2.8 硬度及楊氏係數分析 106
4.2.9 電阻率分析 110
4.3 基板偏壓變量 (Vs)對薄膜之影響 111
4.3.1 成分分析 111
4.3.2 晶體結構分析 113
4.3.3 鍍率分析 116
4.3.4 表面形貌與微結構分析 118
4.3.5 表面粗糙度分析 122
4.3.6 XPS鍵結分析 126
4.3.7 殘留應力分析 128
4.3.8 硬度與楊氏係數分析 130
4.3.9 電阻率分析 134
4.4 (Al-Cr-Nb-Si-B-C)N之薄膜抗氧化性質分析-大氣退火 135
4.4.1 氮氣流率變量之薄膜抗氧化性分析 135
4.4.2 基板偏壓變量之薄膜抗氧化性分析 142
4.4.3 最佳參數 (Al-Cr-Nb-Si-B-C)N薄膜抗氧化性質 151
4.5 (Al-Cr-Nb-Si-B-C)N之薄膜熱穩定性質分析-真空退火 165
4.5.1 晶體結構分析 165
4.5.2 表面形貌與微結構分析 167
4.5.3 硬度與楊氏係數分析 169
4.6 最佳參數之氮化膜 (Al-Cr-Nb-Si-B-C)N附著力試驗 171
4.7 最佳參數之氮化膜 (Al-Cr-Nb-Si-B-C)N磨耗試驗 181
4.8 最佳參數之氮化膜 (Al-Cr-Nb-Si-B-C)N切削試驗 187
第五章、結論 194
第六章、本研究之貢獻 198
第七章、未來研究方向 199
第八章、參考文獻 200 
[1] O. Knotek, M. Bohmer, T. Leyendecker, and F. Jungblut, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 106, pp. 481-488, 1988.
[2] S. Veprek, Journal of Vacuum Science & Technology A, vol. 17, pp. 2401-2420, 1999.
[3] S. PalDey and S. C. Deevi, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 342, pp. 58-79, 2003.
[4] A. Hörling, L. Hultman, M. Odén, J. Sjölén, and L. Karlsson, Surface and Coatings Technology, vol. 191, pp. 384-392, 2005.
[5] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Männling, P. Nesladek, et al., Surface and Coatings Technology, vol. 133–134, pp. 152-159, 2000.
[6] S. M. Aouadi, F. Namavar, T. Z. Gorishnyy, and S. L. Rohde, Surface and Coatings Technology, vol. 160, pp. 145-151, 2002.
[7] E. Camps, L. Escobar-Alarcon, I. Camps, S. Muhl, and M. Flores, Applied Physics a-Materials Science & Processing, vol. 110, pp. 957-961, 2013.
[8] Y. H. Cheng, T. Browne, B. Heckerman, and E. I. Meletis, Surface and Coatings Technology, vol. 205, pp. 4024-4029, 2011.
[9] S. Veprek, H. D. Männling, M. Jilek, and P. Holubar, Materials Science and Engineering: A, vol. 366, pp. 202-205, 2004.
[10] S. Veprek, S. Reiprich, and S. H. Li, Applied Physics Letters, vol. 66, pp. 2640-2642, 1995.
[11] H. C. Barshilia, B. Deepthi, A. S. A. Prabhu, and K. S. Rajam, Surface & Coatings Technology, vol. 201, pp. 329-337, 2006.
[12] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
[13] C. Subramanian and K. N. Strafford, Wear, vol. 165, pp. 85-95, 1993.
[14] C. Subramanian, K. N. Strafford, T. P. Wilks, and L. P. Ward, Journal of Materials Processing Technology, vol. 56, pp. 385-397, 1996.
[15] A. Thobor-Keck, F. Lapostolle, A. S. Dehlinger, D. Pilloud, J. F. Pierson, and C. Coddet, Surface and Coatings Technology, vol. 200, pp. 264-268, 2005.
[16] C. Tritremmel, R. Daniel, M. Lechthaler, P. Polcik, and C. Mitterer, Thin Solid Films, vol. 534, pp. 403-409, 2013.
[17] C. Mitterer, Journal of Solid State Chemistry, vol. 133, pp. 279-291, 1997.
[18] C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, et al., Surface and Coatings Technology, vol. 120–121, pp. 405-411, 1999.
[19] S. N. Monteiro, A. L. D. Skury, M. G. de Azevedo, and G. S. Bobrovnitchii, Journal of Materials Research and Technology, vol. 2, pp. 68-74, 2013.
[20] B. Rother and H. Kappl, Surface & Coatings Technology, vol. 96, pp. 163-168, Nov 1997.
[21] C.-W. Tsai, S.-W. Lai, K.-H. Cheng, M.-H. Tsai, A. Davison, C.-H. Tsau, et al., Thin Solid Films, vol. 520, pp. 2613-2618, 2012.
[22] J. Musil and J. Vlcek, Surface & Coatings Technology, vol. 142, pp. 557-566, 2001.
[23] S. Zhang, D. Sun, Y. Fu, and H. Du, Surface and Coatings Technology, vol. 167, pp. 113-119, 2003.
[24] C. Donnet and A. Erdemir, Surface and Coatings Technology, vol. 180–181, pp. 76-84, 2004.
[25] R. Hauert and J. Patscheider, Advanced Engineering Materials, vol. 2, pp. 247-259, 2000.
[26] S. PalDey and S. C. Deevi, Materials Science and Engineering: A, vol. 342, pp. 58-79, 2003.
[27] J. S. Koehler, Physical Review B, vol. 2, pp. 547-&, 1970.
[28] J. Musil, Surface and Coatings Technology, vol. 125, pp. 322-330, 2000.
[29] J. Musil, Surface & Coatings Technology, vol. 207, pp. 50-65, 2012.
[30] N. Hansen, Scripta Materialia, vol. 51, pp. 801-806, 2004.
[31] K. Lu, Materials Science and Engineering: R: Reports, vol. 16, pp. 161-221, 1996.
[32] I. Wadsworth, I. J. Smith, L. A. Donohue, and W. D. Münz, Surface and Coatings Technology, vol. 94–95, pp. 315-321, 1997.
[33] M. I. Lembke, D. B. Lewis, and W. D. Münz, Surface and Coatings Technology, vol. 125, pp. 263-268, 2000.
[34] R. A. Swalin, Thermodynamics of solids, 1972.
[35] M. G. IHR Kelsall, John Wiley & sons, Ltd., Weat Sussex, England, 2005.
[36] 鄭耿豪, "利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜," 國立清華大學材料科學工程研究所碩士論文, 2005.
[37] 張慧紋, "以反應式直流磁控濺鍍法 Al-Cr-Mo-Si-Ti 高熵氮化物薄膜及其性質探討," 國立清華大學材料科學工程研究所碩士論文, 2005.
[38] 賴思維, "以反應式直流濺鍍法製備AlBCrSiTi高熵氮化物薄膜及其性質探討," in 國立清華大學材料科學工程研究所碩士論文, ed, 2006.
[39] 賴加瀚, "Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究," 國立清華大學材料科學工程研究所博士論文, 2007.
[40] 陳韻如, "B 含量對 AlCrNbSiTiVBx 氮化物薄膜機械性質及耐溫性的影響," 國立清華大學材料科學工程研究所碩士論文, 2007.
[41] 翁稚惠, "AlCrTaTiZr 氮化物薄膜附著力與抗磨耗能力之研究," 國立清華大學材料科學工程研究所碩士論文, 2007.
[42] 黃炳剛, "AlCrNbSiTiV高熵合金極其氮化物濺鍍薄膜之研究," 國立清華大學材料科學工程研究所博士論文, 2009.
[43] W.-J. Shen, M.-H. Tsai, Y.-S. Chang, and J.-W. Yeh, Thin Solid Films, vol. 520, pp. 6183-6188, 2012.
[44] 謝明曉, "(AlCrNbSiTi)薄膜田口法最佳化之研究," 國立清華大學材料科學工程研究所碩士論文, 2011.
[45] 曾思蒨, "以反應是直流濺鍍法製備 AlCrNbSiTa 高熵氮化膜薄膜及其性質探討," 國立清華大學材料科學工程研究所碩士論文, 2012.
[46] 張境芳, "Al-Cr-Nb-Si-Ta 高熵氮化膜之開發研究," 國立清華大學材料科學工程研究所碩士論文, 2013.
[47] W. R. Grove, Phil. Trans. R. Soc. Lond. , vol. 142, pp. 87-101, 1852.
[48] A. W. Wright, Am. J. Sci. Arts, vol. 13, 1877.
[49] S. Berg and T. Nyberg, Thin Solid Films, vol. 476, pp. 215-230, 2005.
[50] B. Chapman, Glow Discharge Process. John Wiley & Sons, Canada, 1980.
[51] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Journal of Vacuum Science & Technology A, vol. 21, pp. S117-S128, 2003.
[52] J. A. Thornton, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 4, pp. 3059-3065, 1986.
[53] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Reports on Progress in Physics, vol. 47, pp. 399-459, 1984.
[54] M. A. P.B. Barna, Science and Technology of Thin Films. Singapore: World Scientific Publishing Co., 1995.
[55] J. A. VENABLES, Introduction to Surface and Thin Film Processes: CAMBRIDGE UNIVERSITY PRESS.
[56] R. Messier, A. P. Giri, and R. A. Roy, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 2, pp. 500-503, 1984.
[57] J. A. Thornton, Annual Review of Materials Science, vol. 7, pp. 239-260, 1977.
[58] D. M. Mattox, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 7, pp. 1105-1114, 1989.
[59] S. Mukherjee and D. Gall, Thin Solid Films, vol. 527, pp. 158-163, 2013.
[60] M. A. P.B. Barna, in: Y. Pauleau, P.B. Barna (Eds.), Protective Coatings and Thin Films. the Netherlands: Kluwer Academic Publishers, 1997.
[61] W. B. Pearson, Crystal chemistry and physics of metals and alloys: Wiley, 1972.
[62] W. A. J. F. Shackelford, CRC Handbook of Material Science and Engineering, 3rd ed. University of California, Davis, 2001.
[63] H. O. Pierson, "Handbook of refractory carbides and nitrides," vol. Noyes Publicaions, ed. New Jersey, 1996.
[64] J. M. Pureza, M. M. Lacerda, A. L. De Oliveira, J. F. Fragalli, and R. A. S. Zanon, Applied Surface Science, vol. 255, pp. 6426-6428, 2009.
[65] W. C. Oliver and G. M. Pharr, Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[66] W. C. Oliver and G. M. Pharr, Journal of Materials Research, vol. 19, pp. 3-20, 2004.
[67] C. Friedrich, G. Berg, E. Broszeit, and C. Berger, Thin Solid Films, vol. 290–291, pp. 216-220, 1996.
[68] R. S. Mason and M. Pichilingi, Journal of Physics D-Applied Physics, vol. 27, pp. 2363-2371, 1994.
[69] G. L. Huffman, D. E. Fahnline, R. Messier, and L. J. Pilione, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 7, pp. 2252-2255, 1989.
[70] K. Kusaka, D. Taniguchi, T. Hanabusa, and K. Tominaga, Vacuum, vol. 66, pp. 441-446, 2002.
[71] T. G. C. S. Chapman, The mathematical theory of non-uniform gases, 3rd. edition ed. Cambridge University Press, 1990.
[72] J. Ullmann, A. J. Kellock, and J. E. E. Baglin, Thin Solid Films, vol. 341, pp. 238-245, 1999.
[73] S. Shao, Z. Fan, J. Shao, and H. He, Thin Solid Films, vol. 445, pp. 59-62, 2003.
[74] A. Bendavid, P. J. Martin, X. Wang, M. Wittling, and T. J. Kinder, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 13, pp. 1658-1664, 1995.
[75] J. Musil, F. Kunc, H. Zeman, and H. Poláková, Surface and Coatings Technology, vol. 154, pp. 304-313, 2002.
[76] H. B. Nie, S. Y. Xu, S. J. Wang, L. P. You, Z. Yang, C. K. Ong, et al., Applied Physics a-Materials Science & Processing, vol. 73, pp. 229-236, 2001.
[77] A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, Journal of Applied Physics, vol. 54, pp. 4590-4595, 1983.
[78] J. Musil, V. Šatava, P. Zeman, and R. Čerstvý, Surface and Coatings Technology, vol. 203, pp. 1502-1507, 2009.
[79] 鄭耿豪, "(AlCrTaTiZr)-Six-N多元氮化物鍍膜微結構、機械性質與高溫氧化行為之研究," 國立清華大學材料科學工程研究所博士論文, 2011.
[80] 沈宛叡, "AlCrNbSiTi 高熵合金與其氮化物薄膜微結構、機械性質與高溫氧化行為之研究," 國立清華大學材料科學工程研究所博士論文, 2014.
[81] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Fifth Edition, 2003.
[82] J. Stallard, S. Poulat, and D. G. Teer, Tribology International, vol. 39, pp. 159-166, 2006.
[83] S. J. Bull and E. G. Berasetegui, Tribology International, vol. 39, pp. 99-114, 2006.
[84] Rabinowicz, E. Tanner, R. I. Tanner, Journalof Applied Mechanics, vol. 33, 1966.
[85] Y. Wang, T. Lei, and J. Liu, Wear, vol. 231, pp. 12-19, 1999.
[86] 劉庭瑋, "多元碳化物薄膜多元碳氮化物薄膜之結構與性質研究," 國立清華大學材料科學工程研究所碩士論文, 2009.
[87] K. Aslantas, İ. Ucun, and A. Çicek, Wear, vol. 274–275, pp. 442-451, 2012.
[88] E. O. Ezugwu and C. I. Okeke, Journal of Materials Processing Technology, vol. 116, pp. 10-15, 2001.
[89] S. K. e. al., Manufacturing, Engineering and Technology SI, 6th ed.: Pearson Education, 2009.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *