|
[1] Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, "Toughening through Nature-Adapted Nanoscale Design," Nano Letters, vol. 9, pp. 4103-4108, Dec 2009. [2] P.-Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, 2012. [3] M. A. Meyers, J. McKittrick, and P. Y. Chen, "Structural biological materials: critical mechanics-materials connections," Science, vol. 339, pp. 773-9, Feb 15 2013. [4] J. Shigley, C. Mischke, and T. Brown, “Standard Handbook of Machine Design.” McGraw-Hill, 2004. [5] P. Fratzl, H. S. Gupta, F. D. Fischer, and O. Kolednik, "Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials," Advanced Materials, vol. 19, pp. 2657-2661, 2007. [6] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, "Biological materials: Structure and mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, 2008. [7] M. Harold M. Frost, "Wolff's Law and bone's structural adaptations to mechanical usage- an overview for clinicians," The Angle Orthodbtist, vol. 64, pp. 175-188, 1994. [8] D. Raabe, P. Romano, C. Sachs, A. Al-Sawalmih, H. G. Brokmeier, S. B. Yi, et al., "Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue," Journal of Crystal Growth, vol. 283, pp. 1-7, 2005. [9] D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S. B. Yi, et al., "Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus," Materials Science and Engineering: A, vol. 421, pp. 143-153, 2006. [10] D. Raabe, C. Sachs, and P. Romano, "The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material," Acta Materialia, vol. 53, pp. 4281-4292, 2005. [11] P. Romano, H. Fabritius, and D. Raabe, "The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material," Acta Biomater, vol. 3, pp. 301-9, May 2007. [12] C. Sachs, H. Fabritius, and D. Raabe, "Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation," J Struct Biol, vol. 155, pp. 409-25, Sep 2006. [13] C. Sachs, H. Fabritius, and D. Raabe, "Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus," J Struct Biol, vol. 161, pp. 120-32, Feb 2008. [14] C. Sachs, H. Fabritius, and D. Raabe, "Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation," Journal of Materials Research, vol. 21, pp. 1987-1995, 2011. [15] M. Ohring, "Materials Science of Thin Films," 2001. [16] L. C. F. K.N. Tu, J.W. Mayer, Electronic Thin Film Science—for Electrical Engineers and Materials Scientists. NewYork: Macmillan, 1992. [17] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin Solid Films, vol. 513, pp. 1-24, Aug 14 2006. [18] J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, "Reactive magnetron sputtering of thin films: present status and trends," Thin Solid Films, vol. 475, pp. 208-218, Mar 22 2005. [19] W. D. Sproul, D. J. Christie, and D. C. Carter, "Control of reactive sputtering processes," Thin Solid Films, vol. 491, pp. 1-17, Nov 22 2005. [20] H. Biederman, "RF sputtering of polymers and its potential application," Vacuum, vol. 59, pp. 594-599, Nov-Dec 2000. [21] J. Alami, S. Bolz, and K. Sarakinos, "High power pulsed magnetron sputtering: Fundamentals and applications," Journal of Alloys and Compounds, vol. 483, pp. 530-534, Aug 26 2009. [22] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface & Coatings Technology, vol. 204, pp. 1661-1684, Feb 25 2010. [23] M. Samuelsson, D. Lundin, K. Sarakinos, F. Bjorefors, B. Walivaara, H. Ljungcrantz, et al., "Influence of ionization degree on film properties when using high power impulse magnetron sputtering," Journal of Vacuum Science & Technology A, vol. 30, May 2012. [24] N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda, "Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques," Journal of Applied Physics, vol. 88, pp. 2734-2739, Sep 1 2000. [25] L. W. Martin, Y. H. Chu, and R. Ramesh, "Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films," Materials Science & Engineering R-Reports, vol. 68, pp. Iii-133, May 20 2010. [26] M. Rubin, S. J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack, "Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering," Solar Energy Materials and Solar Cells, vol. 54, pp. 59-66, Aug 1998. [27] R. Eason, Pulsed laser deposition of thin films. Wiley-Interscience, 2007. [28] V. Nelea, C. Morosanu, M. Iliescu, and I. N. Mihailescu, "Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study," Applied Surface Science, vol. 228, pp. 346-356, Apr 30 2004. [29] D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, et al., "Laser deposition of polymer and biomaterial films," Chemical Reviews, vol. 103, pp. 553-576, Feb 2003. [30] A. Pique, P. Wu, B. R. Ringeisen, D. M. Bubb, J. S. Melinger, R. A. McGill, et al., "Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique," Applied Surface Science, vol. 186, pp. 408-415, Jan 28 2002. [31] B. R. Ringeisen, J. Callahan, P. K. Wu, A. Pique, B. Spargo, R. A. McGill, et al., "Novel laser-based deposition of active protein thin films," Langmuir, vol. 17, pp. 3472-3479, May 29 2001. [32] L. Stamatin, R. Cristescu, G. Socol, A. Moldovan, D. Mihalescu, I. Stamatin, et al., "Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation," Applied Surface Science, vol. 248, pp. 422-427, Jul 30 2005. [33] Y. Tsuboi, M. Goto, and A. Itaya, "Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films," Journal of Applied Physics, vol. 89, pp. 7917-7923, Jun 15 2001. [34] S. T. Li, E. Arenholz, J. Heitz, and D. Bauerle, "Pulsed-laser deposition of crystalline Teflon (PTFE) films," Applied Surface Science, vol. 125, pp. 17-22, Jan 1998. [35] A. A. Voevodin and M. S. Donley, "Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review," Surface & Coatings Technology, vol. 82, pp. 199-213, Aug 1996. [36] A. A. Voevodin, M. S. Donley, and J. S. Zabinski, "Pulsed Laser deposition of diamond-like carbon wear protective coatings: A review," Surface & Coatings Technology, vol. 92, pp. 42-49, Jun 1997. [37] E. L. Tobolski, W. I. Division, I. Corporation, A. Fee, and R. Scales, “Macroindentation Hardness Testing,” in ASM Handbook, 2000, pp. 203–211. [38] A. C. Fischer-Cripps, Nanoindentation, Third. Springer, 2011. [39] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, et al., "Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hv=80 to 105 GPa," Surface & Coatings Technology, vol. 133, pp. 152-159, Nov 2000. [40] H. Holleck and V. Schier, "Multilayer PVD coatings for wear protection," Surface & Coatings Technology, vol. 76, pp. 328-336, Nov 1995. [41] K. J. Ma, A. Bloyce, R. A. Andrievski, and G. V. Kalinnikov, "Microstructural response of mono-and multilayer hard coatings during indentation microhardness testing," Surface & Coatings Technology, vol. 94-5, pp. 322-327, Oct 1997. [42] J. Musil, "Hard and superhard nanocomposite coatings," Surface & Coatings Technology, vol. 125, pp. 322-330, Mar 2000. [43] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Recent advances of superhard nanocomposite coatings: a review," Surface & Coatings Technology, vol. 167, pp. 113-119, Apr 22 2003. [44] P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, "Microstructural design of hard coatings," Progress in Materials Science, vol. 51, pp. 1032-1114, Nov 2006. [45] J. A. Dobrowolski, OPTICAL PROPERTIES OF FILMS AND COATINGS, Second ed.: McGraw-Hill, 1994. [46] B. M. Clemens, H. Kung, and S. A. Barnett, "Structure and strength of multilayers," Mrs Bulletin, vol. 24, pp. 20-26, Feb 1999. [47] T. R. Farhat and J. B. Schlenoff, "Corrosion control using polyelectrolyte multilayers," Electrochemical and Solid State Letters, vol. 5, pp. B13-B15, Apr 2002. [48] D. H. Wang, Y. H. Ni, Q. Huo, and D. E. Tallman, "Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study," Thin Solid Films, vol. 471, pp. 177-185, Jan 3 2005. [49] R. Hubler, A. Schroer, W. Ensinger, G. K. Wolf, W. H. Schreiner, and I. J. R. Baumvol, "Plasma and Ion-Beam-Assisted Deposition of Multilayers for Tribological and Corrosion Protection," Surface & Coatings Technology, vol. 60, pp. 561-565, Oct 8 1993. [50] H. Macleod, Thin-film optical filters, 2001. [51] E. Hecht, Optics, 4 edition. Addison-Wesley, 2001. [52] M. Ylilammi and T. Rantaaho, "Optical Determination of the Film Thicknesses in Multilayer Thin-Film Structures," Thin Solid Films, vol. 232, pp. 56-62, Sep 10 1993. [53] G. E. Dieter, Mechanical Metallurgy: McGraw-Hill, 1976. [54] U. Wiklund, P. Hedenqvist, and S. Hogmark, "Multilayer cracking resistance in bending," Surface & Coatings Technology, vol. 97, pp. 773-778, Dec 1997. [55] D. K. Leung, M. Y. He, and A. G. Evans, "The Cracking Resistance of Nanoscale Layers and Films," Journal of Materials Research, vol. 10, pp. 1693-1699, Jul 1995. [56] R. Hubler, A. Cozza, T. L. Marcondes, R. B. Souza, and F. F. Fiori, "Wear and corrosion protection of 316-L femoral implants by deposition of thin films," Surface & Coatings Technology, vol. 142, pp. 1078-1083, Jul 2001. [57] R. Hubler, "Characterisation of gradient interfaces in thin film multilayers used to protect orthopaedic implants," Surface & Coatings Technology, vol. 116, pp. 1116-1122, Sep 1999. [58] E. W. Wong, P. E. Sheehan, and C. M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes," Science, vol. 277, pp. 1971-1975, Sep 26 1997. [59] H. Hosokawa, A. V. Desai, and M. A. Haque, "Plane stress fracture toughness of freestanding nanoscale thin films," Thin Solid Films, vol. 516, pp. 6444-6447, Jul 31 2008. [60] G. S. Fox-Rabinovich, B. D. Beake, J. L. Endrino, S. C. Veldhuis, R. Parkinson, L. S. Shuster, et al., "Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings," Surface & Coatings Technology, vol. 200, pp. 5738-5742, May 22 2006. [61] A. A. Voevodin and J. S. Zabinski, "Supertough wear-resistant coatings with 'chameleon' surface adaptation," Thin Solid Films, vol. 370, pp. 223-231, Jul 17 2000. [62] S. Zhang, X. L. Bui, and Y. Q. Fu, "Magnetron sputtered hard a-C coatings of very high toughness," Surface & Coatings Technology, vol. 167, pp. 137-142, Apr 22 2003. [63] S. Zhang, X. L. Bui, X. T. Zeng, and X. M. Li, "Towards high adherent and tough a-C coatings," Thin Solid Films, vol. 482, pp. 138-144, Jun 22 2005. [64] A. A. Voevodin and J. S. Zabinski, "Load-adaptive crystalline-amorphous nanocomposites," Journal of Materials Science, vol. 33, pp. 319-327, Jan 15 1998. [65] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Toughness measurement of ceramic thin films by two-step uniaxial tensile method," Thin Solid Films, vol. 469, pp. 233-238, Dec 22 2004. [66] J. W. Hoehn, S. K. Venkataraman, H. Huang, and W. W. Gerberich, "Micromechanical Toughness Test Applied to Nial," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 192, pp. 301-308, Feb 15 1995. [67] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 253, pp. 151-159, Sep 30 1998. [68] B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic-Plastic Indentation Damage in Ceramics - the Median-Radial Crack System," Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980. [69] A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," Journal of the American Ceramic Society, vol. 59, pp. 371-372, 1976. [70] R. F. Cook and G. M. Pharr, "Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics," Journal of the American Ceramic Society, vol. 73, pp. 787-817, Apr 1990. [71] Z. H. Xia, W. A. Curtin, and B. W. Sheldon, "A new method to evaluate the fracture toughness of thin films," Acta Materialia, vol. 52, pp. 3507-3517, Jul 12 2004. [72] M. D. Michel, L. V. Muhlen, C. A. Achete, and C. M. Lepienski, "Fracture toughness, hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition," Thin Solid Films, vol. 496, pp. 481-488, 2006. [73] J. den Toonder, J. Malzbender, G. de With, and R. Balkenende, "Fracture toughness and adhesion energy of sol-gel coatings on glass," Journal of Materials Research, vol. 17, pp. 224-233, Jan 2002. [74] J. Malzbender, J. M. J. den Toonder, A. R. Balkenende, and G. de With, "Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol-gel coatings on glass," Materials Science & Engineering R-Reports, vol. 36, pp. 47-103, Feb 25 2002. [75] K. B. Bosserhoff and A. Schrey, "A New Technique for Testing the Impact Load of Thin Films The Coating Impact Test," Surface and Coatings Technology, vol. 54-55, pp. 102-107, 1992. [76] K. D. Bouzakis and A. Siganos, "Fracture initiation mechanisms of thin hard coatings during the impact test," Surface and Coatings Technology, vol. 185, pp. 150-159, 2004. [77] K. D. Bouzakis, A. Siganos, T. Leyendecker, and G. Erkens, "Thin hard coatings fracture propagation during the impact test," Thin Solid Films, vol. 460, pp. 181-189, 2004. [78] N. V. K.-D. Bouzakis, T. Leyendecker , 0. Lemmer, H.G. Fuss, G. Erkens "Determination of the Fatigue Behavior of Thin Hard Coatings Using the Impact Test and a FEM Simulation," Surface and Coatings Technology vol. 86-87, pp. 549-556, 1996. [79] N. V. K.-D. Bouzakis, T. Leyendecker, G. Erkens, R. Wenke "Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation," Thin Solid Films vol. 308–309, pp. 315–322, 1997. [80] N. V. K.-D. Bouzakis, N. Michailidis, T. Leyendecker, G. Erkens, G. Fuss "Quantification of Properties Modification and Cutting Performance of (Ti1−xAlx)N Coatings at Elevated Temperatures," Surface and Coatings Technology, vol. 120-121, pp. 34-43, 1999. [81] N. V. K.-D. Bouzakis, K. David, "The concept of an advanced impact tester supported by evaluation software for the fatigue strength characterization of hard layered media," Thin Solid Films vol. 355-356, pp. 322-329, 1999. [82] P. Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, Nov 2012. [83] U. G. K. Wegst and M. F. Ashby, "The mechanical efficiency of natural materials," Philosophical Magazine, vol. 84, pp. 2167-2181, Jul 21 2004. [84] H. D. Espinosa, J. E. Rim, F. Barthelat, and M. J. Buehler, "Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials," Progress in Materials Science, vol. 54, pp. 1059-1100, Nov 2009. [85] A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, and J. S. Zabinski, "Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films," Thin Solid Films, vol. 298, pp. 107-115, Apr 20 1997. [86] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Toughening of hard nanostructural thin films: a critical review," Surface & Coatings Technology, vol. 198, pp. 2-8, Aug 1 2005. [87] Y. V. Milman, B. A. Galanov, and S. I. Chugunova, "Plasticity Characteristic Obtained through Hardness Measurement," Acta Metallurgica Et Materialia, vol. 41, pp. 2523-2532, Sep 1993. [88] X. D. Li, D. F. Diao, and B. Bhushan, "Fracture mechanisms of thin amorphous carbon films in nanoindentation," Acta Materialia, vol. 45, pp. 4453-4461, Nov 1997. [89] J. J. Chen and S. J. Bull, "Modelling the limits of coating toughness in brittle coated systems," Thin Solid Films, vol. 517, pp. 2945-2952, Mar 2 2009. [90] W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, Jan 2004. [91] M. Jirout and J. Musil, "Effect of addition of Cu into ZrOx film on its properties," Surface & Coatings Technology, vol. 200, pp. 6792-6800, Aug 1 2006. [92] J. A. Thornton, "High-Rate Thick-Film Growth," Annual Review of Materials Science, vol. 7, pp. 239-260, 1977. [93] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, "Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests," Thin Solid Films, vol. 270, pp. 431-438, Dec 1 1995.
|