帳號:guest(3.15.18.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐宗豪
作者(外文):Hsu, Tsung-Hao
論文名稱(中文):甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
論文名稱(外文):Bio-inspirations from Crustacean Exoskeletons: Investigations on the ZrO2 and TiO2/PI Multilayer Coatings Synthesized by a Hybrid Sputtering and Pulsed Laser Deposition Technique
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po-Yu
口試委員(中文):吳芳賓
吳志明
口試委員(外文):Wu, Fan-Bean
Wu, Jyh-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031570
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:120
中文關鍵詞:仿生外骨骼多層薄膜濺鍍脈衝雷射沉積機械性質韌性強化機制
外文關鍵詞:bio-inspirationexoskeletonmultilayer coatingssputteringpulsed laser depositionmechanical propertiestoughening mechanisms
相關次數:
  • 推薦推薦:0
  • 點閱點閱:252
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
甲殼類的外骨骼是由天然的幾丁質及蛋白質複合材料所構成,藉由機械性質的梯度變化來提供其優越的強度以及破裂韌性。其主要的韌性強化機制為裂縫在堅硬外表皮與強韌內表皮之間的介面偏折,使得裂縫不易直接擴散進整個外骨骼中。此外,內表皮擁有旋轉的夾板結構(Bouligand structure)以形成週期性的彈性模數變化來阻擋裂縫前進並進一步強化其破裂韌性。有鑑於此,本研究利用射頻磁控濺鍍以及雷射蒸鍍沉積複合系統來鍍製陶瓷及高分子多層仿生薄膜。為了模仿甲殼類外骨骼中的上表皮與下表皮的性質,利用氧化鋯堅硬外層以及週期性堆疊氧化鈦與聚醯亞胺強韌內層來製備高韌性複合薄膜。其中,氧化鈦與聚醯亞胺多層膜的厚度比例固定在10比1 (100 nm:10 nm),並藉由改變氧化鋯的厚度,從100 nm到500 nm來探討彈性模數梯度變化對薄膜機械性質的影響。量測方面,奈米壓痕儀被使用來量測多層膜的機械性質。而仿生薄膜的破裂韌性量測則是由壓痕法來製造裂縫並藉由能量計算來得到薄膜破裂韌性。研究結果顯示,特定厚度比例的氧化鋯外層可以有效地提升薄膜破裂韌性,其韌性強化機制以及仿生設計會在此研究中分析討論。
Crustacean exoskeleton, a natural composite consisting of chitin, proteins and minerals, has gradient constituent and microstructure which provide excellent hardness and fracture toughness. The major toughening mechanism is the crack deflection at the interface between the hard exocuticle and tough endocuticle so that the crack cannot propagate through the exoskeleton directly. The twisted plywood (or Bouligand) structure which possesses elastic modulus mismatch and oscillation could further prevent cracks from propagation. A novel hybrid system combining reactive RF sputtering and pulsed laser deposition is designed and utilized to synthesize bio-inspired ceramic/polymer multilayer coatings. In order to mimic the exocuticle and endocuticle in crustacean exoskeleton, multilayer coatings composed of hard ZrO2 outer layers and tough TiO2/polyimide inner layers were synthesized. The thickness ratio of TiO2/polyimide layers is kept 10 to 1 (100 nm/10 nm), and the thickness of ZrO2 was altered from 100 nm to 500 nm to investigate the effect of the elastic modulus gradient on the mechanical properties. Nanoindentation was conducted to evaluate the mechanical performance of multilayer films. The fracture toughness of bio-inspired coatings was further evaluated by the energy-based indentation method. Results show that the multilayer film with specific thickness ratio of ZrO2 has the highest fracture toughness. Toughening mechanisms were elucidated and optimal bio-inspired designs were proposed in this study.
中文摘要 I
Abstract II
Contents III
Figure Caption VII
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Overview – Nature Armors 4
2.2 Characteristics of Biological Materials 5
2.3 Functional Adaptation and Mechanical Properties of Biomaterials 8
2.4 Crustacean Exoskeletons 10
2.4.1 Hierarchical Structure 11
2.4.2 Mechanical Properties 12
2.5 Thin Film Technique 13
2.5.1 Reactive Sputtering 13
2.5.2 Pulsed Laser Deposition 15
2.5.3 Hybrid PVD System 17
2.5.4 Hard Coatings 18
2.5.5 Multilayer Coatings 19
2.6 Fracture Toughness 21
2.6.1 Indentation Plasticity 22
2.6.2 Scratch Toughness 23
2.6.3 Toughness Evaluation from Radial Crack 24
2.6.4 Substrate Indentation Method 25
2.6.5 Circumferential Cracking and Spallation 26
2.6.6 Micro-tensile Testing for Standalone Thin Films 27
2.7 Impact Resistance 28
Chapter 3 Experimental Procedure 54
3.1 Hybrid Physical Vapor Deposition System 54
3.2 Substrate Preparation 55
3.3 Sputtering 55
3.4 Pulsed Laser Deposition 56
3.5 Microstructural Characterization 57
3.6 Phase Identification 57
3.7 Mechanical Properties Evaluation 58
3.7.1 Hardness and Elastic Modulus 58
3.7.2 Fracture Toughness 58
3.7.3 Impact Resistance 60
Chapter 4 Results and Discussion 71
4.1 Optimization of Hybrid PVD System 72
4.1.1 Monolayer Films 73
4.1.2 Multilayer Films 75
4.1.3 Summary 77
4.2 Phase Identification and Composition Analysis of Monolayer Films 78
4.2.1 Zirconia Film and Titania Films 78
4.2.2 Polyimide Film 79
4.3 Microstructural Design and Synthesis of Multilayer Films 80
4.4 Hardness Evaluation 82
4.5 Elastic Modulus Evaluation 83
4.6 Impact Resistance Evaluation 83
4.6.1 Impact Resistance of ZrO2/TiO2 Bilayer Films 84
4.6.2 Impact Resistance of TiO2/PI Multilayer Films 86
4.6.3 Impact Resistance of Exoskeleton-inspired Multilayer Film 87
4.7 Fracture Toughness Measurement and Toughening Mechanism 89
4.7.1 Microindentation 90
4.7.2 Fracture Toughness Evaluation 90
Chapter 5 Conclusions 108
Chapter 6 Future Work 110
6.1 Improvement of Film Qualities 110
6.2 Enhancement of Corrosion Resistance 111
6.3 Modification of Fracture Toughness Evaluation 111
References 113
[1] Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, "Toughening through Nature-Adapted Nanoscale Design," Nano Letters, vol. 9, pp. 4103-4108, Dec 2009.
[2] P.-Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, 2012.
[3] M. A. Meyers, J. McKittrick, and P. Y. Chen, "Structural biological materials: critical mechanics-materials connections," Science, vol. 339, pp. 773-9, Feb 15 2013.
[4] J. Shigley, C. Mischke, and T. Brown, “Standard Handbook of Machine Design.” McGraw-Hill, 2004.
[5] P. Fratzl, H. S. Gupta, F. D. Fischer, and O. Kolednik, "Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials," Advanced Materials, vol. 19, pp. 2657-2661, 2007.
[6] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, "Biological materials: Structure and mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, 2008.
[7] M. Harold M. Frost, "Wolff's Law and bone's structural adaptations to mechanical usage- an overview for clinicians," The Angle Orthodbtist, vol. 64, pp. 175-188, 1994.
[8] D. Raabe, P. Romano, C. Sachs, A. Al-Sawalmih, H. G. Brokmeier, S. B. Yi, et al., "Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue," Journal of Crystal Growth, vol. 283, pp. 1-7, 2005.
[9] D. Raabe, P. Romano, C. Sachs, H. Fabritius, A. Al-Sawalmih, S. B. Yi, et al., "Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus," Materials Science and Engineering: A, vol. 421, pp. 143-153, 2006.
[10] D. Raabe, C. Sachs, and P. Romano, "The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material," Acta Materialia, vol. 53, pp. 4281-4292, 2005.
[11] P. Romano, H. Fabritius, and D. Raabe, "The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material," Acta Biomater, vol. 3, pp. 301-9, May 2007.
[12] C. Sachs, H. Fabritius, and D. Raabe, "Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation," J Struct Biol, vol. 155, pp. 409-25, Sep 2006.
[13] C. Sachs, H. Fabritius, and D. Raabe, "Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus," J Struct Biol, vol. 161, pp. 120-32, Feb 2008.
[14] C. Sachs, H. Fabritius, and D. Raabe, "Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation," Journal of Materials Research, vol. 21, pp. 1987-1995, 2011.
[15] M. Ohring, "Materials Science of Thin Films," 2001.
[16] L. C. F. K.N. Tu, J.W. Mayer, Electronic Thin Film Science—for Electrical Engineers and Materials Scientists. NewYork: Macmillan, 1992.
[17] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin Solid Films, vol. 513, pp. 1-24, Aug 14 2006.
[18] J. Musil, P. Baroch, J. Vlcek, K. H. Nam, and J. G. Han, "Reactive magnetron sputtering of thin films: present status and trends," Thin Solid Films, vol. 475, pp. 208-218, Mar 22 2005.
[19] W. D. Sproul, D. J. Christie, and D. C. Carter, "Control of reactive sputtering processes," Thin Solid Films, vol. 491, pp. 1-17, Nov 22 2005.
[20] H. Biederman, "RF sputtering of polymers and its potential application," Vacuum, vol. 59, pp. 594-599, Nov-Dec 2000.
[21] J. Alami, S. Bolz, and K. Sarakinos, "High power pulsed magnetron sputtering: Fundamentals and applications," Journal of Alloys and Compounds, vol. 483, pp. 530-534, Aug 26 2009.
[22] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface & Coatings Technology, vol. 204, pp. 1661-1684, Feb 25 2010.
[23] M. Samuelsson, D. Lundin, K. Sarakinos, F. Bjorefors, B. Walivaara, H. Ljungcrantz, et al., "Influence of ionization degree on film properties when using high power impulse magnetron sputtering," Journal of Vacuum Science & Technology A, vol. 30, May 2012.
[24] N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda, "Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques," Journal of Applied Physics, vol. 88, pp. 2734-2739, Sep 1 2000.
[25] L. W. Martin, Y. H. Chu, and R. Ramesh, "Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films," Materials Science & Engineering R-Reports, vol. 68, pp. Iii-133, May 20 2010.
[26] M. Rubin, S. J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack, "Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering," Solar Energy Materials and Solar Cells, vol. 54, pp. 59-66, Aug 1998.
[27] R. Eason, Pulsed laser deposition of thin films. Wiley-Interscience, 2007.
[28] V. Nelea, C. Morosanu, M. Iliescu, and I. N. Mihailescu, "Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study," Applied Surface Science, vol. 228, pp. 346-356, Apr 30 2004.
[29] D. B. Chrisey, A. Pique, R. A. McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, et al., "Laser deposition of polymer and biomaterial films," Chemical Reviews, vol. 103, pp. 553-576, Feb 2003.
[30] A. Pique, P. Wu, B. R. Ringeisen, D. M. Bubb, J. S. Melinger, R. A. McGill, et al., "Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique," Applied Surface Science, vol. 186, pp. 408-415, Jan 28 2002.
[31] B. R. Ringeisen, J. Callahan, P. K. Wu, A. Pique, B. Spargo, R. A. McGill, et al., "Novel laser-based deposition of active protein thin films," Langmuir, vol. 17, pp. 3472-3479, May 29 2001.
[32] L. Stamatin, R. Cristescu, G. Socol, A. Moldovan, D. Mihalescu, I. Stamatin, et al., "Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation," Applied Surface Science, vol. 248, pp. 422-427, Jul 30 2005.
[33] Y. Tsuboi, M. Goto, and A. Itaya, "Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films," Journal of Applied Physics, vol. 89, pp. 7917-7923, Jun 15 2001.
[34] S. T. Li, E. Arenholz, J. Heitz, and D. Bauerle, "Pulsed-laser deposition of crystalline Teflon (PTFE) films," Applied Surface Science, vol. 125, pp. 17-22, Jan 1998.
[35] A. A. Voevodin and M. S. Donley, "Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review," Surface & Coatings Technology, vol. 82, pp. 199-213, Aug 1996.
[36] A. A. Voevodin, M. S. Donley, and J. S. Zabinski, "Pulsed Laser deposition of diamond-like carbon wear protective coatings: A review," Surface & Coatings Technology, vol. 92, pp. 42-49, Jun 1997.
[37] E. L. Tobolski, W. I. Division, I. Corporation, A. Fee, and R. Scales, “Macroindentation Hardness Testing,” in ASM Handbook, 2000, pp. 203–211.
[38] A. C. Fischer-Cripps, Nanoindentation, Third. Springer, 2011.
[39] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, et al., "Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hv=80 to 105 GPa," Surface & Coatings Technology, vol. 133, pp. 152-159, Nov 2000.
[40] H. Holleck and V. Schier, "Multilayer PVD coatings for wear protection," Surface & Coatings Technology, vol. 76, pp. 328-336, Nov 1995.
[41] K. J. Ma, A. Bloyce, R. A. Andrievski, and G. V. Kalinnikov, "Microstructural response of mono-and multilayer hard coatings during indentation microhardness testing," Surface & Coatings Technology, vol. 94-5, pp. 322-327, Oct 1997.
[42] J. Musil, "Hard and superhard nanocomposite coatings," Surface & Coatings Technology, vol. 125, pp. 322-330, Mar 2000.
[43] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Recent advances of superhard nanocomposite coatings: a review," Surface & Coatings Technology, vol. 167, pp. 113-119, Apr 22 2003.
[44] P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, "Microstructural design of hard coatings," Progress in Materials Science, vol. 51, pp. 1032-1114, Nov 2006.
[45] J. A. Dobrowolski, OPTICAL PROPERTIES OF FILMS AND COATINGS, Second ed.: McGraw-Hill, 1994.
[46] B. M. Clemens, H. Kung, and S. A. Barnett, "Structure and strength of multilayers," Mrs Bulletin, vol. 24, pp. 20-26, Feb 1999.
[47] T. R. Farhat and J. B. Schlenoff, "Corrosion control using polyelectrolyte multilayers," Electrochemical and Solid State Letters, vol. 5, pp. B13-B15, Apr 2002.
[48] D. H. Wang, Y. H. Ni, Q. Huo, and D. E. Tallman, "Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study," Thin Solid Films, vol. 471, pp. 177-185, Jan 3 2005.
[49] R. Hubler, A. Schroer, W. Ensinger, G. K. Wolf, W. H. Schreiner, and I. J. R. Baumvol, "Plasma and Ion-Beam-Assisted Deposition of Multilayers for Tribological and Corrosion Protection," Surface & Coatings Technology, vol. 60, pp. 561-565, Oct 8 1993.
[50] H. Macleod, Thin-film optical filters, 2001.
[51] E. Hecht, Optics, 4 edition. Addison-Wesley, 2001.
[52] M. Ylilammi and T. Rantaaho, "Optical Determination of the Film Thicknesses in Multilayer Thin-Film Structures," Thin Solid Films, vol. 232, pp. 56-62, Sep 10 1993.
[53] G. E. Dieter, Mechanical Metallurgy: McGraw-Hill, 1976.
[54] U. Wiklund, P. Hedenqvist, and S. Hogmark, "Multilayer cracking resistance in bending," Surface & Coatings Technology, vol. 97, pp. 773-778, Dec 1997.
[55] D. K. Leung, M. Y. He, and A. G. Evans, "The Cracking Resistance of Nanoscale Layers and Films," Journal of Materials Research, vol. 10, pp. 1693-1699, Jul 1995.
[56] R. Hubler, A. Cozza, T. L. Marcondes, R. B. Souza, and F. F. Fiori, "Wear and corrosion protection of 316-L femoral implants by deposition of thin films," Surface & Coatings Technology, vol. 142, pp. 1078-1083, Jul 2001.
[57] R. Hubler, "Characterisation of gradient interfaces in thin film multilayers used to protect orthopaedic implants," Surface & Coatings Technology, vol. 116, pp. 1116-1122, Sep 1999.
[58] E. W. Wong, P. E. Sheehan, and C. M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes," Science, vol. 277, pp. 1971-1975, Sep 26 1997.
[59] H. Hosokawa, A. V. Desai, and M. A. Haque, "Plane stress fracture toughness of freestanding nanoscale thin films," Thin Solid Films, vol. 516, pp. 6444-6447, Jul 31 2008.
[60] G. S. Fox-Rabinovich, B. D. Beake, J. L. Endrino, S. C. Veldhuis, R. Parkinson, L. S. Shuster, et al., "Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings," Surface & Coatings Technology, vol. 200, pp. 5738-5742, May 22 2006.
[61] A. A. Voevodin and J. S. Zabinski, "Supertough wear-resistant coatings with 'chameleon' surface adaptation," Thin Solid Films, vol. 370, pp. 223-231, Jul 17 2000.
[62] S. Zhang, X. L. Bui, and Y. Q. Fu, "Magnetron sputtered hard a-C coatings of very high toughness," Surface & Coatings Technology, vol. 167, pp. 137-142, Apr 22 2003.
[63] S. Zhang, X. L. Bui, X. T. Zeng, and X. M. Li, "Towards high adherent and tough a-C coatings," Thin Solid Films, vol. 482, pp. 138-144, Jun 22 2005.
[64] A. A. Voevodin and J. S. Zabinski, "Load-adaptive crystalline-amorphous nanocomposites," Journal of Materials Science, vol. 33, pp. 319-327, Jan 15 1998.
[65] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Toughness measurement of ceramic thin films by two-step uniaxial tensile method," Thin Solid Films, vol. 469, pp. 233-238, Dec 22 2004.
[66] J. W. Hoehn, S. K. Venkataraman, H. Huang, and W. W. Gerberich, "Micromechanical Toughness Test Applied to Nial," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 192, pp. 301-308, Feb 15 1995.
[67] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 253, pp. 151-159, Sep 30 1998.
[68] B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic-Plastic Indentation Damage in Ceramics - the Median-Radial Crack System," Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980.
[69] A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," Journal of the American Ceramic Society, vol. 59, pp. 371-372, 1976.
[70] R. F. Cook and G. M. Pharr, "Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics," Journal of the American Ceramic Society, vol. 73, pp. 787-817, Apr 1990.
[71] Z. H. Xia, W. A. Curtin, and B. W. Sheldon, "A new method to evaluate the fracture toughness of thin films," Acta Materialia, vol. 52, pp. 3507-3517, Jul 12 2004.
[72] M. D. Michel, L. V. Muhlen, C. A. Achete, and C. M. Lepienski, "Fracture toughness, hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition," Thin Solid Films, vol. 496, pp. 481-488, 2006.
[73] J. den Toonder, J. Malzbender, G. de With, and R. Balkenende, "Fracture toughness and adhesion energy of sol-gel coatings on glass," Journal of Materials Research, vol. 17, pp. 224-233, Jan 2002.
[74] J. Malzbender, J. M. J. den Toonder, A. R. Balkenende, and G. de With, "Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol-gel coatings on glass," Materials Science & Engineering R-Reports, vol. 36, pp. 47-103, Feb 25 2002.
[75] K. B. Bosserhoff and A. Schrey, "A New Technique for Testing the Impact Load of Thin Films The Coating Impact Test," Surface and Coatings Technology, vol. 54-55, pp. 102-107, 1992.
[76] K. D. Bouzakis and A. Siganos, "Fracture initiation mechanisms of thin hard coatings during the impact test," Surface and Coatings Technology, vol. 185, pp. 150-159, 2004.
[77] K. D. Bouzakis, A. Siganos, T. Leyendecker, and G. Erkens, "Thin hard coatings fracture propagation during the impact test," Thin Solid Films, vol. 460, pp. 181-189, 2004.
[78] N. V. K.-D. Bouzakis, T. Leyendecker , 0. Lemmer, H.G. Fuss, G. Erkens "Determination of the Fatigue Behavior of Thin Hard Coatings Using the Impact Test and a FEM Simulation," Surface and Coatings Technology vol. 86-87, pp. 549-556, 1996.
[79] N. V. K.-D. Bouzakis, T. Leyendecker, G. Erkens, R. Wenke "Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation," Thin Solid Films vol. 308–309, pp. 315–322, 1997.
[80] N. V. K.-D. Bouzakis, N. Michailidis, T. Leyendecker, G. Erkens, G. Fuss "Quantification of Properties Modification and Cutting Performance of (Ti1−xAlx)N Coatings at Elevated Temperatures," Surface and Coatings Technology, vol. 120-121, pp. 34-43, 1999.
[81] N. V. K.-D. Bouzakis, K. David, "The concept of an advanced impact tester supported by evaluation software for the fatigue strength characterization of hard layered media," Thin Solid Films vol. 355-356, pp. 322-329, 1999.
[82] P. Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, Nov 2012.
[83] U. G. K. Wegst and M. F. Ashby, "The mechanical efficiency of natural materials," Philosophical Magazine, vol. 84, pp. 2167-2181, Jul 21 2004.
[84] H. D. Espinosa, J. E. Rim, F. Barthelat, and M. J. Buehler, "Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials," Progress in Materials Science, vol. 54, pp. 1059-1100, Nov 2009.
[85] A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, and J. S. Zabinski, "Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films," Thin Solid Films, vol. 298, pp. 107-115, Apr 20 1997.
[86] S. Zhang, D. Sun, Y. Q. Fu, and H. J. Du, "Toughening of hard nanostructural thin films: a critical review," Surface & Coatings Technology, vol. 198, pp. 2-8, Aug 1 2005.
[87] Y. V. Milman, B. A. Galanov, and S. I. Chugunova, "Plasticity Characteristic Obtained through Hardness Measurement," Acta Metallurgica Et Materialia, vol. 41, pp. 2523-2532, Sep 1993.
[88] X. D. Li, D. F. Diao, and B. Bhushan, "Fracture mechanisms of thin amorphous carbon films in nanoindentation," Acta Materialia, vol. 45, pp. 4453-4461, Nov 1997.
[89] J. J. Chen and S. J. Bull, "Modelling the limits of coating toughness in brittle coated systems," Thin Solid Films, vol. 517, pp. 2945-2952, Mar 2 2009.
[90] W. C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, Jan 2004.
[91] M. Jirout and J. Musil, "Effect of addition of Cu into ZrOx film on its properties," Surface & Coatings Technology, vol. 200, pp. 6792-6800, Aug 1 2006.
[92] J. A. Thornton, "High-Rate Thick-Film Growth," Annual Review of Materials Science, vol. 7, pp. 239-260, 1977.
[93] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, "Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests," Thin Solid Films, vol. 270, pp. 431-438, Dec 1 1995.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *