帳號:guest(3.144.88.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡尚霖
作者(外文):Tsai, Shang Lin
論文名稱(中文):生活周遭光源對人體褪黑激素抑制的影響
論文名稱(外文):Ambiet light at night effect on melatonin secretion
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo Huei
口試委員(中文):薛景中
岑尚仁
口試委員(外文):Shyue, Jing Tong
Chen, Sun Zen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031569
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:光源褪黑激素
外文關鍵詞:LightMelatonin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:655
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現代世界的電力照明光源,尤其是不當的夜間光照,會造成生理節奏的紊亂並增加罹患乳癌的機率,乳癌已成為全球女性癌症死亡的首要原因,其關鍵因素為夜間光照對「褪黑激素(Melatonin, MLT),又稱為抑制腫瘤生長激素」分泌的抑制;然而,目前多數研究是以單色光光源進行MLT抑制的實驗,因此,本研究使用實驗室所擁有的「用以量測褪黑激素抑制之裝置」專利,透過該專利之MLT抑制效率作用光譜,可精確地預測一般照明或顯示器等環境光源對人體MLT造成多少程度的抑制。根據結果,一般照明中,白光螢光燈管和白光發光二極體對MLT抑制程度最嚴重,於100勒克斯下分别造成64%和63% MLT的抑制;相對而言,蠟燭與類燭光有機發光二極體僅分別造成46%和33% MLT的抑制。顯示器而言,適當觀看距離下,大尺寸電視、電腦顯示器、筆記型電腦、平板與手機仍大幅對MLT造成45%至59%的抑制。此外,捕蚊燈更能產生達飽和70% MLT抑制,紅外線加熱器亦可導致25% MLT抑制。此研究揭示各式照明與顯示用光源中的色溫、照度、距離與藍光成分多寡如何抑制MLT分泌。
Over exposure of electric light at night causes circadian disruption and increases the risk of breast cancer, the global leading cause of women's cancer death. One major factor of these is the suppression of light on the secretion of melatonin (MLT), an oncostatic hormone generated by pineal gland during the dark night. The suppression is to vary with the variation of wavelength, dosage, and duration according to previous studies, mostly based on monochromatic lights. The practical ambient lights are however polychromatic, either from the general lighting or display, and there lacks an action spectrum to quantify how the ambient lights affect the suppression of MLT. In this study, we present an action spectrum of MLT suppression that covers the effects of emission over the entire visible range. We found in lighting that white fluorescent tubes and white LED lamps have the most severe impact; they respectively show an around 64%suppression at100 lx, a typical illuminance at home. In contrast, the suppression is 46% and 33% for candles and candlelight-style OLEDs. In display, large size TVs show a suppression around53% at a 2m watching distance, 56% for general PC monitors at 60cm, and 55% for laptops at 40cm. The suppression is around57% by viewing mobile phones at 20 cm or tablets at 30 cm. Surprisingly, bug zapper causes a saturated 70% suppression and IR-based heater also causes 25% suppression. Our results demonstrate how color-temperature, blue and violet lights, illuminance, and viewing distance sensitively affect the suppression of MLT, and healthy light can hence be designed and proper safe measures be taken to safeguard human health.
摘要II
英文摘要III
致謝V
目錄VIII
表目錄X
圖目錄XI
壹、緒論 1
貳、文獻回顧3
2-1 褪黑激素的重要性3
2-2 光對褪黑激素的影響10
2-3 光與視覺的關係20
2-4 生活周遭的光源26
2-4-1 照明光源27
2-4-2 顯示器31
參、實驗方法33
3-1 褪黑激素抑制理論基礎33
3-1-1 褪黑激素抑制作用光譜(光子33
3-1-2 褪黑激素抑制作用光譜(流明34
3-1-3 曝照量與褪黑激素抑制的關聯36
3-2 光源光譜之量測38
3-3 光源照度之量測39
肆、結果與討論42
4-1 單色光對褪黑激素分泌的影響42
4-1-1 波長對褪黑激素抑制之能力(光子/流明)42
4-1-2亮度(照度)對褪黑激素的影響45
4-2 各式光源光譜與色溫50
4-3 不同距離之各式光源亮度(照度)54
4-4 生活周遭光源對褪黑激素分泌的影響59
4-4-1 檯燈62
4-4-2 電視64
4-4-3 電腦/筆記型電腦66
4-4-4 平板/手機69
4-4-5 其他光源70
伍、結論74
陸、參考資料77
附錄、個人著作目錄94
1. Pirenne, MH. Independent Light-Detectors in the Peripheral Retina. J. Physiol. 107(4), 47 (1948)
2. Davson, H. [Colour vision: Introduction] The Visual Process:The Eye [219-229] (Academic Press, 2014)
3. Roberts D.Artificial lighting and the blue light hazard. Available at: http://www.mdsupport.org/library/hazard.html. (Accessed: 15th July 2011)
4. Algvere, P. V., Marshall, J. & Seregard, S. Age-related maculopathy and the impact of blue light hazard. Acta. Ophthalmol. Scand.84, 4-15 (2006)
5.Smith, L.Will we have to look at Sunflowers in the dark? Scientists discover museum lights are damaging valuable masterpieces by Van Gogh and Cézanne. Available at: http://www.dailymail.co.uk/sciencetech/article-2258344/Scientists- discover-LED-lights-damaging-valuable-masterpieces-artists-including-Van-Gogh-C-zanne.html. (Accessed: 7th January 2013)
6. Grimm,C. et al. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci. 42(2), 497-505 (2001)
7. McLennan, I.S. & Taylor-Jeffs, J. The use of sodium lamps to brightly illuminate mouse houses during their dark phases. Lab. Anim. 38(4), 384-92 (2004)
Arendt, J.Melatonin and human rhythms. Chronobiol. Int. 23(1-2), 21-37 (2006)
8. Lewy, A.J., Wehr, T.A., Goodwin, F.K., Newsome, D.A. & Markey, SP. Light suppressesmelatoninsecretion in humans. Science. 210(4475), 1267-9 (1980)
9. Navara, K.J. & Nelson, R.J. The dark side of light at night: physiological, epidemiological, and ecological consequences. J. Pineal. Res. 43(3), 215-24 (2007)
10. Brainard, G.C. et al. Human melatonin regulation is not mediated by the three cone photopic visual system.J. Clin. Endocrinol. Metab. 86(1), 433-6 (2001)
11. Lockley, S.W.,Brainard, G.C.&Czeisler, C.A.High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 88(9), 4502-5 (2003)
12.Zeitzer, J.M., Dijk, D-J., Kronauer, R.E., Brown, E.N. & Czeisler, C.A. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526(Pt 3), 695–702. (2000)
13. Pauley, S.M. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med. Hypotheses. 63, 588–596 (2004)
14. Stevens,R.G., Brainard, G.C., Blask, D.E. Lockley, S.W. & Motta, M.E. Breast cancer and circadian disruption from electric lighting in the modern world. CA-Cancer J. Clin. 64, 207–218 (2014)
15. Stevens, R.G. Artificial lighting in the industrialized world: circadian disruption and breast cancer. CCC. 17, 501–507 (2006)
16. Schernhammer, E.S. & Schulmeister, K. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br. J. Cancer. 90, 941–943 (2004)
17. Schernhammer, E.S.et al.Night-shift work and risk of colorectal cancer in the nurses’ health study. J. Natl. Cancer Inst. 95(11), 825-8 (2003)
18. Stevens, R.G. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Int. J. Epidemiol. 38, 963–970 (2009)
19. Schernhammer, E.S. et al. Epidemiology of urinary melatonin in women and its relation to other hormones and night work.Cancer Epidem. Biomar.13(6), 936-43 (2004)
20. Sigurdardottir, L.G. et al. Urinary melatonin levels, sleep disruption, and risk of prostate cancer in elderly men.Eur. Urol.67(2), 191–194 (2015)
21. Brainard, G.C. et al. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor.J. Neurosci.21(16), 6405–6412 (2001)
22. Thapan, K., Arendt, J. & Skene, D.J. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans.J. Physiol.535.1, 261–267 (2001)
23. Hanifin, J.P. et al. High-intensity red light suppresses melatonin. Chronobiol. Int. 23(1&2), 251–268 (2006)
24. Morita, T. & Tokura, H. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans. Appl. Human Sci. 15, 243–246 (1996)
25. Rea, M.S. Bullough, J.D. & Figueiro, M.G. Human melatonin suppression by light: a case for scotopic efficiency. Neurosci. Lett. 299, 45–48 (2001)
26. Brainard, G.C., Richardson, B.A., Petterborg, L.J. & Reiter, R.J. The effect of different light intensities on pineal melatonin content. Brain Res. 233, 75–81 (1982)
27. Figueiro, M.G., Rea, M.S. & Bullough, J.D. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neurosci. Lett. 406, 293–297 (2006)
28.Revell, V.L. & Skene, D.J.Light-induced melatonin suppression in humans with polychromatic and monochromatic light.Chronobiol. Int. 24(6), 1125–1137 (2007)
29. Kozaki, T., Koga, S., Toda, N., Noguchi, H. & Yasukouchi, A. Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neurosci. Lett.439, 256–259 (2008)
30.Figueiro, M.G.,Wood, B.,Plitnick, B.&Rea, M.S. The impact of light from computer monitors on melatonin levels in college students.Neuro. Endocrinol. Lett.32(2), 158-63 (2011)
31. Chang, A-M., Aeschbach, D., Duffy, J.F. & Czeisler, C.A. Evening use of light-emitting e-Readers negatively affects sleep, circadian timing, and next-morning alertness. PNAS. 112(4), 1232–1237 (2015)
32. Katsuura, T., Jin, X., Baba, Y., Shimomura, Y. & Iwanaga, K. Effects of color temperature of illumination on physiological functions. J. Physiol. Anthropol. Appl. Hum. Sci. 24, 321–325 (2005)
33. Kozaki, T. et al. Effect of color temperature of light sources on slow-wave sleep. J. Physiol. Anthropol. Appl. Hum. Sci. 24, 183–186 (2005)
34. Yasukouchi, A. & Ishibashi, K. Non-visual effects of the color temperature of fluorescent lamps on physiological aspects in humans. J. Physiol. Anthropol. Appl. Hum. Sci. 24, 41–43 (2005)
35. Jou, J-H. Melatonin suppression extent measuring device. Patent US20120303282 A1 (2012)
36. Sharpe, LT.,Stockman, A.,Jagla, W. &Jägle, H. A luminous efficiency function, V*(lambda), for daylight adaptation. J. Vis.5(11), 948-68 (2005)
37. Gibson,K.S. Spectral luminosity factors. JOSA. 30(2), 51-61 (1940)
38. Waldi, G. Human vision and the spectrum. Science. 101(2635), 653-8 (1945)
39. Dartnall, H.J.A., Bowmaker, J.K. & Mollon J.D. Human visual pigments: microspectrophotometric results from the eyes of seven persons. [115-130] (Royal Society of London, 1983)
40. Fouquet, R. & Pearson, P.J. The long run demand for lighting: elasticities and rebound effects in different phases of economic development. EEEP. 1(1), 83-100 (2012)
41.Crosbie, T., Stokes, M. & Guy, S.Illuminating household energy demand and the policies for its reduction.E&E. 19(7), 979-994 (2008)
42.Melatonin. Sleepdex. (2011)
43. Life Science Databases(LSDB). File: Pineal gland.png. Available at: http://www.wikiwand.com/ja/%E6%9D%BE%E6%9E%9C%E4%BD%93 (Accessed: 20th September 2009)
44.Altun, A.&Ugur-Altun, B. Melatonin: therapeutic and clinical utilization.Int. J. Clin. Pract.61(5), 835-45(2007)
45. Limson, Janice, Nyokong, T. & Oaya, S. The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J. pineal Res. 24.1, 15-21 (1998)
46. Mills, B. File:Serotonin-2D-skeletal.svg. Available at: https://en.wikipedia.org/wiki/Serotonin#/media/File:Serotonin-2D-skeletal.svg(Accessed: 17th January 2012)
47. Simon, H. Complex carbohydrates. Available at: http://umm.edu/health/medical/reports/images/complex-carbohydrates
48. Veracity, D. Research shows that seeds and nuts are "brain foods" that can also stabilize your mood. Available at: http://www.naturalnews.com/019885_nuts_and_seeds_cognitive_function.html#
(Accessed: 7th August 2006)
49. Walcutt D.L. Chocolate and mood disorders. Available at: http://psychcentral.com/blog/archives/2009/04/27/chocolate-and-mood-disorders/(Accessed: 24th April 2009)
50. WebMD. Foods That Fight Winter Depression. Available at: http://www.webmd.com/depression/features/foods-that-fight-winter-depression (Accessed: 31st May 2013)
51. Young, S.N. How to increase serotonin in the human brain without drugs. J. Psychiatry Neurosci. 32(6), 394–399 (2007)
52. Lewis, K.K. Massage: It's real medicine. Available at:http://edition.cnn.com/2007/HEALTH/03/08/healthmag.massage/(Accessed: 8th March 2007)
53. Field, T., Hernandez-Reif, M., Diego, M., Schanberg, S. &Kuhn C. Cortisol decreases and serotonin and dopamine increase following massage therapy.Int. J. Neurosci.115(10), 1397-413 (2005)
54. Valerie Balandra ARNP, B.C. & Dr. Dave Depression and serotonin.Available at:http://www.integrativepsychiatry.net/depression_and_serotonin.html
55. Perreau-Linck, E. et al. In vivo measurements of brain trapping of α-[11C]methyl-L-tryptophan during acute changes in mood states.J. Psychiatry Neurosci.32, 430-4 (2007)
56.Carlsson, A., Svennerholm, L. &Winblad, B. Seasonal and circadian monoamine variations in human brains examined post mortem.Acta. Psychiatr. Scand. Suppl. 280, 75-85 (1980)
57.Korb, A.Boosting Your Serotonin Activity. Available at:https://www.psychologytoday.com/blog/prefrontal-nudity/201111/boosting-your-serotonin-activity(Accessed: 17th November 2011)
58. Karasek, M. &Winczyk, K. Melatonin in humans.J. Physiol. Pharmacol.57 Suppl 5, 19-39 (2006)
59.Ardura, J., Gutierrez, R., Andres, J. &Agapito, T. Emergence and evolution of the circadian rhythm of melatonin in children. Horm. Res.59(2), 66-72 (2003)
60. Sack, R.L., Lewy, A.J., Erb, D.L., Vollmer, W.M. &Singer, C.M. Human melatonin production decreases with age.J. Pineal Res.3(4), 379-88 (1986)
61. Zeitzer, J.M., Duffy, J.F., Lockley, S.W., Dijk, D.J. &Czeisler, C.A. Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake.Sleep.30(11), 1437-43 (2007)
62. Lynch, H.J., Wurtman, R.J., Moskowitz, M.A., Archer, M.C. &Ho, M.H. Daily rhythm in human urinary melatonin. Science.187(4172), 169-71 (1975)
63. Herxheimer, A. &Petrie, K.J. Melatonin for the prevention and treatment of jet lag.Cochrane Database Syst Rev.(2), CD001520 (2002)
64. Arendt, J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev. Reprod. 3, 13-22 (1998)
65. UNC. Circadian rhythm & sleep cycle Available at: https://learn.pharmacy.unc.edu/insomnia/node/6 (Accessed: 2nd January 2014)
66. Buscemi, N. et al. Melatonin for treatment of sleep disorders. Evid. Rep. Technol. Assess. (Summ).(108), 1-7 (2004)
[67. Hansen, M.V., Halladin, N.L., Rosenberg, J., Gögenur, I. & Møller, A.M. Melatonin for pre- and postoperative anxiety in adults. Cochrane Database Syst Rev(4), CD009861 (2015)
68. Griefahn, B., Brode, P., Blaszkewicz, M. & Remer, T. Melatonin production during childhood and adolescence: a longitudinal study on the excretion of urinary 6-hydroxymelatonin sulfate. J. Pineal Res. 34, 26-31 (2003)
69. Poeggeler, B., Reiter, R.J., Tan, D.X., Chen, L.D. & Manchester, L.C. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis.J. Pineal Res. 14(4), 151–68 (1993)
70. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine.27(2), 119-30 (2005)
71. Reiter, R.J., Acuña-Castroviejo, D., Tan, D.X. &Burkhardt, S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system.Ann. N. Y. Acad. Sci.939, 200-15 (2001)
72. Carrillo-Vico, A., Guerrero, J.M., Lardone, P.J. &Reiter, R.J. A review of the multiple actions of melatonin on the immune system.Endocrine.27(2), 189-200 (2005)
73. Arushanian, E.B., Beĭer, E.V. Immunotropic properties of pineal melatonin.Eksp. Klin. Farmakol.65(5), 73-80 (2002)
74. Panzer, A. &Viljoen, M. The validity of melatonin as an oncostatic agent.J Pineal Res.22(4), 184-202 (1997)
75.Cutolo, M. &Maestroni, G.J. The melatonin-cytokine connection in rheumatoid arthritis.Ann. Rheum. Dis.64(8), 1109-11 (2005)
76. Sa´nchez-Barcelo´, E.J., Cos, S., Ferna´ndez, R. & Mediavilla, M.D. Melatonin and mammary cancer: a short review Endocrine-Related Cancer. 10, 153-159 (2003)
77. Kloog, I., Haim, A.,Stevens, R.G.,Barchana, M.&Portnov, B.A. Light at Night Co‐distributes with Incident Breast but not Lung Cancer in the Female Population of Israel. Chronobiology Int. 25, 65-81 (2008)
78. Tala, A. Lack of Sleep, Light at Night Can Raise Cancer RiskAvailable at: http://www.medicaldaily.com/lack-sleep-light-night-can-raise-cancer-risk-238184 (Accessed: 11th October 2011)
79. Zeitzer, J.M., Dijk, D.J., Kronauer, R.E., Brown, E.N. & Czeisler, C.A. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526(3), 695-702 (2000)
80. Khalsa, S.B.S., Jewett, M.E., Cajochen, C. & Czeisler, C.A. A phase
response curve to single bright light pulses in human subjects. J. Physiol.549(3), 945-952 (2003)
81. The colour of light and it's wavelength Available at: http://www.cresttech.com.au/led_info_wavelength.html
82. Rüger, M. et al. Human phase response curve to a single 6.5 h pulse of short‐wavelength light. J. physiol. 591, 1353-363 (2013)
83. Coohill, T.P. Action spectra again? Photochem. Photobiol. 54, 859–870 (1991)
84. Coohill, T.P. Photobiological action spectra: what do they mean? In: Measurements of optical radiation hazards. Munich: International Commission on Non-Ionizing Radiation Protection. pp 27–39. (1999)
85. Smith, K.C. The science of photobiology. New York: Plenum. (1989)
86. Soni, B.G. & Foster, R.G. A novel and ancient vertebrate opsin. FEBS. Lett 406, 279–283. (1997)
87. 作用光譜Available at: http://www.twwiki.com/wiki/%E4%BD%9C%E7%94%A8%E5%85%89%E8%AD%9C
88. Dowling, J. & Boycott, B. Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London Series B, Biological Sciences. 80-111. (1966)
89. 大田登. 色彩工程學 - 理論與應用. 全華圖書股份有限公司 (2008)
90.http://www.studenthealth.gov.hk/tc_chi/health/health_ev/images/sp1.gif.
91. Pirenne, M.H. Independent Light-Detectors in the Peripheral Retina. J. Physiol-London. 107(4), P47-P47 (1948)
92. Kolb, H.F.E. & Nelson, R. The Organization of the Retina and Visual System
93. http://www.rags-int-inc.com/PhotoTechStuff/CameraEye/
94. http://en.wikipedia.org/wiki/Luminosity_function
95. Planck, M. On the law of the energy distribution in the normal spectrum. Ann. Phys. 4(553), 90 (1901)
96. http://www.techmind.org/colour/coltemp.html
97. Potera, C. The core of the candle problem. Environ. health persp. 108(4), A165 (2000)
98. Anshel, J. Visual ergonomics handbook. CRC Press (2010)
99. Damelincourt, J-J. Lamps and lighting. Engineering Science and Education Journal. 9(5), 196-202 (2000)
100. 許招墉. 照明手冊 (2006)
101.https://zh.wikipedia.org/wiki/%E8%9E%A2%E5%85%89%E7%87%88
102. Vliet J.V. & Groot J.D. High-pressure sodium discharge lamps. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A. 128(6), 415-441 (1981)
103. Wharmby, D. Scientific aspects of the high-pressure sodium lamp. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A. 127(3), 165-172 (1980)
104. Kimura, N. et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Applied physics letters 90(5), 051109-051109-051103. (2007)
105. Radkov, E., Setlur, A., Brown, Z. & Reginelli, J. High CRI phosphor blends for near-UV LED lamps. Optical Science and Technology, the SPIE 49th Annual Meeting; 2004: International Society for Optics and Photonics. p. 260-265 (2004)
106. Schubert, E.F. & Kim, J.K. Solid-state light sources getting smart. Science. 308(5726), 1274-1278 (2005)
107. Pimputkar, S., Speck, J.S., DenBaars, S.P. & Nakamura, S. Prospects for LED lighting. Nature photonics. 3(4), 180-182 (2009)
108. https://en.wikipedia.org/wiki/OLED
109. Jou, J-H. Candle Light-Style Organic Light-Emitting Diodes. Adv. Funct. Mater. 23, 2750–2757 (2013)
110. http://www.earlytelevision.org/15GP22.html
111. http://inventors.about.com/od/pstartinventions/a/plasmaTV.htm
112.Schadt, M. and Helfrich, W. Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal (TN-LCD) Phys. Rev. Lett. 27, 561 (1971)
113. Castellano, J. Modifying Light.American Scientist. (2006)
114. http://www.ctimes.com.tw/DispArt/tw/13011113518X.shtml
115. Barsanti, L. & Gualtieri, Paolo.Algae: anatomy, biochemistry, and biotechnology. [185-188] (CRC press, 2014)
116. Poynton, C. [Introduction to radiometry and photometry] Digital video and HD: Algorithms and Interfaces. [601-607] (Elsevier, 2012)
117. Jou, J-H. et al. Ambient light effect on melatonin suppression. (2015)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *