帳號:guest(3.141.7.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):駱巍文
作者(外文):Lo, Wei Wen
論文名稱(中文):二氧化碳與水在大氣電漿中之活化與反應: 光譜和臨場濃度研究
論文名稱(外文):The excitation and reactions of carbon dioxide (CO2) with water in atmospheric pressure plasma: the study by OES spectra and in-situ concentration sensing
指導教授(中文):楊長謀
指導教授(外文):Yang, Chang Mou
口試委員(中文):陳建中
張濬智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031556
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:123
中文關鍵詞:電漿二氧化碳
外文關鍵詞:plasmaCO2H2O
相關次數:
  • 推薦推薦:0
  • 點閱點閱:148
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在探討二氧化碳(CO2)和水蒸氣,在常壓電漿作用下的活化與複雜的電漿化學反應。在電漿中,由於高動能的加速電子群,能藉著撞擊,將能量傳給電漿內的分子,並轉為可累積的分子振動能,可跨越鍵結能障,進行分子化學反應。因此,不必如傳統化學方法加熱整個反應槽到接近1000˚C的高溫,在電漿中我們可以在常溫常壓態下,以此種分子標靶型的加熱,讓CO2與水蒸氣分解並進行轉化反應。我們藉著發光光譜方法(OES, optical emission spectroscopy),觀察CO2和水蒸氣在電漿中分解成各種自由基(CO、C2、OH、O、H、CH)所呈現的各個特徵峰,並假設每個特徵峰強度(Ii),能由一個固定的平均常數(alphai),轉為該自由基濃度(Ci = Ii x alphai )。然後藉著由改變反應參數(功率、流量、水蒸氣濃度)所得的一連串OES光譜,由物質不滅定律,可得一連串聯立方程式。最後再利用電腦數值方法解出各個i,即可得知在常壓電漿中,CO2與水的活化以及各種中間態的反應路徑,如何因電漿反應參數的調整而變動。我們並用氣體偵測器進行輔助觀察。
結果顯示,當功率提升造成電漿中的電子溫度上升時,可以促進CO2和水在電漿中的分解反應,產生更多的自由基,以及彼此碰撞所結合的成更多有機小分子。而水濃度增加,可以在電漿反應中產生更多的H原子,讓中間產物和H不斷反應生成乙醇、丙酮、乙烷。增加CO2流量,使反應物在電漿中反應的時間減少,因此電漿反應生成的自由基減少,會抑制各種有機物小分子的生成。

Complex plasma chemical reactions of carbon dioxide (CO2) and water vapor (H2O) activated in low-temperature non-catalytic atmospheric pressure plasma jet were investigated in this thesis. By collisions of plasma electrons with the CO2 and H2O molecules, a major fraction of the kinetic energy is transferred into molecular vibrational energy, which can then be accumulated to the level of crossing the bonding barriers, commencing the plasma chemical reactions. In this fashion, heating the whole reaction tank to close to 1000oC, as necessarily done in the conventional CO2 conversion reactions, can be done without and high efficiency reactions between CO2 and H2O molecules are activated at the ambient condition. The production of the radicals of CO, C2, OH, O, H, and CH, as a result from the plasma reactions between CO2 and H2O molecules, were evident from the observation of the characteristic peaks of the optical emission spectroscopy (OES) spectra. By assuming the existence of a constant average efficiency factor i for each OES radical peak during the plasma reactions, the species concentrations could be acquired from the characteristic peak intensities of the OES spectrum (Ii) via a simple relation of Ci = Ii ×alphai. We then varied the plasma reaction parameters, such as the plasma power, water vapor concentration, and flow rate, to obtain a series of OES spectra, from which a series of simultaneous equations of i, Ci, and Ii were established based on mass conservation. Finally, we used a computational method to solve the alphai‘s from these equations. With that, we are able to unveil the activation of CO2 and H2O in the plasma and the proceeding of the myriad intermediates reactions as influenced by the experimental parameters. As a check, we also used an alcohol vapor detector to measure the concentration of one of the key end products of the plasma reactions.
The results show that when the power increases to elevate the electron temperature, carbon dioxide and water dissociate further to generate more radicals which then interact to form organic compounds like alcohols, ketones, aldehydes, and hydrocarbon. On the other hand, as the water concentration increases, more hydrogen is generated to react with the various intermediate species to form ethanol, acetone, and ethane. Finally, when the flow rate of the carbon dioxide and water vapor is reduced, the molecules of water and carbon dioxide have shorter residence times in the plasma reactor so that smaller amounts of radicals are produced to generate the organic compounds.
摘要 I
Abstract III
圖目錄 VIII
表目錄 XII
第一章 簡介 1
1-1 二氧化碳與溫室效應之介紹 1
1-2 利用催化劑對二氧化碳的化學循環 3
1-3 大氣常壓電漿 5
第二章 文獻回顧 11
2-1 二氧化碳的電漿反應 11
2-1-1 震盪激發(Vibrational Excitation) 11
2-1-2 電子激發(Electronic Excitation) 13
2-1-3 熱平衡放電 14
2-1-4 非熱平衡放電 15
2-2 大氣電漿原理 18
2-2-1 氣體游離過程 18
2-2-2 氣體崩潰機制 21
2-2-3 產生均勻放電的方法 28
2-3 大氣射頻電容式電漿放電特徵 32
2-3-1 兩種放電模式 32
2-3-2 放電電壓與電流關係圖 33
第三章 實驗設置 37
3-1 大氣電漿系統(APPJ) 37
3-2 電漿放光光譜儀(OES) 39
3-3 氣體偵測器 39
第四章 結果和討論 41
4-1 大氣電漿中反應的各種特徵 41
4-2 電漿放光光譜儀(OES)之結果 44
4-3 CO2/H2O電漿不同功率之影響 54
4-4 CO2/H2O電漿不同水濃度之影響 63
4-5 CO2/H2O電漿不同流量之影響 68
4-6 反應路徑分析 72
4-7 電子撞擊時間與功率、水濃度、流量關係 74
第五章 結論 76
第六章 參考文獻 78
第七章 附錄 83
[1] Intergovernmental Panel on Climate Change,IPCC:http://www.ipcc.ch
[2] C.Stewart, M.Hessami, Energy Conversion and Management. 2005, 46, 403.
[3] M. Balat, H. Balat, C. Oz, Energy Sources part A 2009, 31, 1473
[4] 藍啟仁, 台電工程月刊 1996, 572, 42.
[5] J. Kothandaraman, A. Goeppert, M. Czaun, Journal of the American Chemical Society 2011, 133, 12881.
[6] P. Y. Bruice, Organic chemistry, Pearson Education, 2004.
[7] K. M. K. Yu, C. M. Y. Yeung, S.C. Tsang, Journal of the American Chemical Society 2007, 129, 6360.
[8] J. Y. Wang, G. G. Xia, A. Huang, S. L. Suib, Y. Hayashi, H. Matsumoto, Journal of Catalysis 1999, 185, 152.
[9] M. Sahibzada , I. S. Metcalife, D. Chadwick, Journal of Catalysis 1998, 174, 111.
[10] S. Lee, A. Sardesai, Topics in Catalysis 2005, 32, 197.
[11] M. Aresta, A. Dibenedetto, Dalton Transactions, 2007, 2975.
[12] Skeptical Science ,http://www.skepticalscience.com/Graphs-from-the-Zombie-Wars.html
[13] K. G. Kostov, R. Y. Honda, Brazilian Journal of Physics, 2009, 39, 322.
[14] B. M. Penetrante, M. C. Hsiao, Applied Physics Letters, 1996, 68, 3719.
[15] J. S. Chang, P. A. Lawless, IEEE Transactions on Plasma Science, 1991, 19, 1152.
[16] N. Tippayawong, P. Khongkrapan, International Journal of Environmental Science and Technology, 2009, 6, 407.
[17] T. B. Reed, Journal of Applied Physics, 1961, 32, 821.
[18] N. Jiang, A. L. Ji, Z. X. Cao, Journal of Applied Physics, 2009, 106,013308.
[19] A. Schutze, J. Y. Jeong, IEEE Transactions on Plasma Science, 1998, 26, 1685.
[20] A. Fridman, plasma Chemistry, Cambridge University Press, New York, 2008.
[21] B. Chapman, Glow Discharge Process, John Wiley & Sons, Inc., New York, 1980.
[22] Y. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin, New York, 1991.
[23] J. R. Roth, Industrial Plasma Engineering, vol. 1, Institute of physics Publishing, Bristol, 1995.
[24] J. R. Roth, Industrial Plasma Engineering, vol. 2, Institute of physics Publishing, Bristol, 2001.
[25] M.A. Liebermann, A. L. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994.
[26] J. I. Levatter, S. C. Lin, Journal of Applied Physics, 1980, 51, 210.
[27] A. J. Palmer, Applied Physics Letters, 1974, 25, 138.
[28] S. Okazaki, M. Kogoma, M. Uehara, Journal of Physics D: Applied Physics, 1993, 26, 889.
[29] S. Kanazawa, M. Kogoma, T. Moriwaki, Journal of Physics D: Applied Physics, 1988,21,838.
[30] T. Yokoyama, M. Kohoma, S. Kanazawa, T. Moriwaki , Journal of Physics D: Applied Physics, 1990, 23, 374.
[31] T. Yokoyama, M. Kohoma, Journal of Physics D: Applied Physics, 1990, 23, 1125.
[32] J. J. Shi, M. G. Kong, IEEE Transactions on Plasma Science, 2005, 33, 276.
[33] J. L. Walsh, J. J. Shi, M. G. Kong, Applied Physics Letters, 2006, 89, 161505.
[34] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, Plasma Sources Science and Technology, 2005, 14, 314.
[35] J. Park, I. Henins, H. W. Herrmann, Journal of Applied Physics, 2001, 89, 20.
[36] I. Wichterle, J. Linek,”Antoine Vapor Pressure Constants of Compounds”, Academia,Praha 1971.
[37] Y. P. Raizer, M. N. Shneider. N. A. Yatsenjo, Radio-Frequency Capacitive Discharges, CRC, Boca Raton 1995.
[38] J. Laimer, A. Puchhammer, H. Stori, Plasma Processes and Polymers, 2009, 6, S253.
[39] J. Hyun-Su, Japanese Journal of Applied Physics, 2013, 52, 6R, 066202.
[40] K. S Kini, M. I. Savadatti, Journal of Physics B: Atomic, Molecular and Optical Physics , 1977, 10, 1049.
[41] C. J. Malerich, J. H. Scanlon, Chemical Physics, 1986, 110, 303.
[42] A.N. Goyette, J. E. Lawler, L.W. Anderson, D. M. Gruen, T. G. McCauley, D. Zhou, A. R. Krasuss, Plasma Sources Science and Technology, 1998, 7, 149.
[43] P. Vidaud, S. M. A. Durrani, D. R. Hall, Journal of Physics D-Applied Physics, 1988, 21, 57.
[44] Y. P. Raizer, Glow Discharge Physics. New York: Spronger–Verlag, 1991.
[45] 張濬智, 清華大學材料系博士論文, 利用電漿反應合成有機發光高分子以及活化二氧化碳為能源材料之研究, 2011.
[46] M.E. Dry, Applied Catalysis A: General, 1996, 138, 319.
[47] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.
[48] G. Willis, W. J. Saryend, D. M. Marlow, Journal of Applied Physics, 1969, 50, 68.
[49] H. Raether, Avalanches and Breakdown in Gases. London: Butter Worth, 1964.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *