帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡力文
論文名稱(中文):磷酸鋰鐵前驅物暨包碳電池改質研究
論文名稱(外文):The study of LiFePO4 precursor and cell performance modified with carbon coating
指導教授(中文):周麗新
口試委員(中文):張延瑜
周元昉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031555
出版年(民國):103
畢業學年度:103
語文別:中文英文
論文頁數:117
中文關鍵詞:磷酸鋰鐵
相關次數:
  • 推薦推薦:0
  • 點閱點閱:437
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究係以化學法先合成出奈米花瓣片狀前驅物,再經由熱處理使相變化成具橄欖石結構的奈米花瓣片狀LiFePO4,此片狀形貌可縮短鋰離子傳輸路徑,提升鋰離子的傳輸效率。此片狀形貌的前驅物疑似一個新的未知材料,本論文以XRD、SEM、TEM、XPS及ICP進行鑑定,結果顯示此前驅物是由多種晶相與非晶組合而成,且Li:Fe:P的原子比例約為1:1.05:1。
本研究亦以前述片狀形貌LiFePO4搭配不同的碳源進行包碳以改善其導電性,實驗結果顯示在眾多碳源的包碳製程中,PS包覆LiFePO4的電池表現效果最佳,在50 C的高放電電流下還有12 mAh/g的比電容,推測係由於PS包碳有比較多的六圓環碳結構且其包碳的碳膜最連續,因此有最佳的導電特性。
In this study, we synthesize a nanoscale flower-like petal shape precursor by chemical method. After annealing, this precursor can be transformed to LiFePO4 with olivine structure without morphology change. The flower-like petal shape morphology can shorten its lithium ion conduction path to improve the conduction efficiency of lithium ion. This flower-like precursor can not be identified easily and is suspected to be a new species. We tried to identify it by applying XRD、SEM、TEM、XPS and ICP for characterizations. The result showed that the flower-like precursor was composed of multiple crystal phases in amorphous matrix with a total Li:Fe:P ratio of about 1:1.05:1.
Furthermore, we mixed various carbon sources with flower-like precursor and then calcinated it to obtain various LiFePO4+carbon composites to improve the poor conductivity of LiFePO4 in this study. The result showed that the effect of PS coating process is better than other carbon sources coating process such as sucrose, stearic acid and PS+GO. The battery that manufactured by LiFePO4/PS powder could deliver 12 mAh/g even at 50 C discharging rate. It could be attributed to the continuous carbon coating characteristic of LiFePO4 with PS source and the highest six-fold ring percentage carbon structure of PS among all the carbon sources tested.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.1.1 LiCoO2 3
1.1.2 LiNiO2 4
1.1.3 LiMn2O4 6
1.1.4 LiFePO4 7
1.2研究動機與架構 9
第二章 文獻回顧 10
2.1鋰離子電池工作原理 10
2.2磷酸鋰鐵改質方式 11
2.2.1碳包覆增加導電度 11
2.2.2奈米化縮短鋰離子擴散路徑 18
第三章 實驗方法 21
3.1實驗架構流程 21
3.2前驅物合成 22
3.3球磨包碳LiFePO4、無添加碳源LiFePO4製備流程 22
3.4材料鑑定分析 23
3.4.1 X光繞射儀 23
3.4.2場發射掃描式電子顯微鏡 24
3.4.3拉曼光譜儀 24
3.4.4高解析穿透式電子顯微鏡 25
3.4.5X光電子能譜儀 (XPS) 25
3.4.6 元素分析儀 (EA) 25
3.5 電池性能測試 26
3.6實驗藥品 28
3.7實驗器材 29
第四章 結果與討論 30
4.1前驅物材料鑑定 30
4.1.1前驅物SEM形貌觀察 30
4.1.2前驅物XRD繞射圖結晶相判斷 31
4.1.3前驅物的TEM微結構觀察與晶面比對 46
4.1.4前驅物X光電子能譜儀鑑定 52
4.1.5 XRD、XPS、TEM觀察到的前驅物組成物質整理 63
4.1.6感應偶合電漿光譜儀鑑定元素比例 65
4.2 球磨包碳碳源是否溶解對於前驅物形貌影響探討 67
4.3 不同包碳製程粉末分析 69
4.3.1 XRD繞射圖譜 69
4.3.2 SEM形貌觀察 74
4.3.3 TEM碳膜包覆情形觀察 80
4.3.4 拉曼光譜分析 85
4.3.5元素分析碳含量檢測 88
4.4電池測試結果分析 90
4.4.1無添加碳源LiFePO4電池測試 91
4.4.2 2 mm鋯球硬脂酸包碳LiFePO4電池測試(修正係數1.0207) 94
4.4.3 0.8 mm鋯球蔗糖包碳LiFePO4電池測試(修正係數1.0579) 99
4.4.4 2 mm鋯球PS包碳LiFePO4電池測試(修正係數1.0318) 103
4.4.5 2 mm鋯球PS+GO包碳LiFePO4電池測試(修正係數1.0456) 109
第五章 結論 114
參考文獻 115

[1] J. M. Tarascon and M. Armand, Nature, 414 (2001) 359-367
[2]李文雄 , 科學發展362期 (2003年2月) 32-35
[3] K. Mizushima, P. C. Jones, P.J. Wiseman and J.B. Goodenough, Mat. Res. Bull., 15 (1980) 783-789
[4]黃可龍, 王兆祥, 劉素琴,鋰離子電池原理與技術初版,-台北市五南出版社, 2010年5月
[5] S. H. Yang, L. Croguennec, C. Delmas, E. C. Nelson, M. A. O’keefe, Nature Mater., 2 (2003) 464-467
[6] G. G. Amatucci, J. M. Tarascon, C. Klein, J. Electrochem. Soc., 143 (1996) 1114-1123
[7] P. Kalyani, N. Kalaiselvi, Sci. Technol. Adv. Mater., 6 (2005) 689–703
[8] C. Delmas, J. P. Pérès, A. Rougier, A. Demourgues,F. Weill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan, P. Willmann, J. Power Sources, 68 (1997) 120-125
[9] Z. Zhang, D. Fouchard, J. R. Rea, J. Powcr Sources, 70 (1998) 16-20
[10] M. Hirayama, N. Sonoyama, M. Ito, M. Minoura, D. Mori, A. Yamada, K. Tamura, J. Mizuki, R. Kanno, J. Electrochem. Soc., 154 (2007) A1065-A1072
[11] J. Choa, M. M. Thackeray, J. Electrochem. Soc., 146 (1999) 3577-3581
[12] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc, 144 (1997) 1188-1194
[13] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. Goodenough, J. Electrochem. Soc, 144 (1997) 1609-1613
[14] D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett., 7 (2004) A30-A32
[15] C. A. J. Fisher, V. M. H. Prieto, M. S. Islam, Chem. Mater., 20 (2008) 5907–5915
[16] Y. Zhang, Q-Y. Huo, P-P, Du, L-Z. Wang, A-Q. Zhang, Y-H. Song, Y. Lv, G-Y. Li, Synth. Met., 162 (2012) 1315–1326
[17] W-J. Zhang, J. Power Sources, 196 (2011) 2962–2970
[18] K. Kang, Y. S. Meng, J. Bre´ger, C. P. Grey, G. Ceder, Science, 311 (2006) 977-980
[19] K. Smith, C-Y. Wang, J. Power Sources, 160 (2006) 662–673
[20] J. P. Christophersen, G. L. Hunt, C. D. Ho, D. Howell, J. Power Sources, 173 (2007) 998–1005
[21] D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahna, J. Power Sources, 108 (2002) 8–14
[22] S. Megahed, W. Ebner, J. Power Sources, 54 (1995) 155-162
[23] Y. Wang, Y. Wang, E. Hosono, K. Wang, and H. Zhou, Angew. Chem. Int. Ed. 47 (2008) 7461–7465
[24] P.P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta, 46 (2001) 3517–3523
[25] Y-H. Nien, J. R. Carey, J-S Chen, J. Power Sources, 193 (2009) 822–827
[26] H. Bia, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen, W. Zhao, Electrochim. Acta, 88 (2013) 414–420
[27] Y. Shi, S-L. Chou, J-Z. Wang, D. Wexler, H-J. Li, H-K. Liu, Y. Wu, J. Mater. Chem., 22 (2012) 16465–16470
[28] L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett., 12 (2012) 5632−5636
[29] R. Dedryve`re, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, Chem. Mater., 20 (2008) 7164–7170
[30] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy publish by Physical electronics, Inc
[31]C. L. Aravinda, P. Bera, V. Jayaram, S. M. Mayanna, Appl. Surf. Sci., 191 (2002) 128-137
[32] G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker, J. Chem. Soc., Dalton Trans., 14 (1974) 1525-1530
[33] M.V. Landau, A. Gutmana, M. Herskowitz, R. Shuker, Y. Bitton, D. Mogilyansky, J. Mol. Catal. A Chem., 176 (2001) 127–139
[34] Y. Wang and P. M. A. Sherwood, Surf. Sci. Spectra, 9 (2002) 99-105
[35] M. Aronniemi, J. Sainio, J. Lahtinen, Surf. Sci., 578 (2005) 108-123
[36] M.S. Bhuvaneswari, N.N. Bramnik, D. Ensling, H. Ehrenberg, W. Jaegermann, J. Power Sources, 180 (2008) 553–560
[37] G. P. Lopez, D. G. Castner, B. D. Ratner, Surf. Interface Analysis, 17 (1991) 267-272
[38] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, J. Electrochem. Soc. 152 (2005) A607-A610
[39] A. C. Ferrari, J. Robertson, Phys. Rev. B, 61 (2000) 14095-14107
[40] S. Yu, S. Dan, G. Luo,W. Liu, Y. Luo, X. Yu, Y. Fang, J Solid State Electrochem, 16 (2012) 1675–1681
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *