帳號:guest(3.15.137.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅丹
作者(外文):Lo, Tan
論文名稱(中文):奈米金粒子強化有機發光二極體
論文名稱(外文):Nano Gold Particle Enhanced Organic Light Emitting Diode
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo Huei
口試委員(中文):薛景中
岑尚仁
劉國辰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031554
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:107
中文關鍵詞:有機發光二極體濕式製作磷光金奈米粒子
外文關鍵詞:OLEDwet processphosphorescencegold nano particle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:250
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機發光二極體(Organic Light Emitting Diode, OLED)具有自發光、低功耗、廣視角、輕、薄及可撓曲等特點,可應用在高品質顯示與固態照明。然而,欲使產品更節能與增長壽命,高效率OLED的研發相當關鍵;除了開發新穎材料或改變元件結構,亦可以使用添加物進行元件調質。本研究添加奈米金粒子於OLED元件,有效強化綠光與藍光元件之能量效率與最大亮度。在1,000 cd/m2下,綠光與藍光之能量效率分別提升24.8%(29.0→36.2 lm/W)與35.0% (6.0→8.1 lm/W);最大亮度則分別提升29.3% (21,500→27,800 cd/m2)與24.3% (7,800→9,700 cd/m2)。此提升現象可歸因於添加奈米金粒子,輔助載子注入,有效增加整體電流密度,進一步增加了激子產生的數量。除此之外,使用奈米粒子有以下好處:(1)添加於非發光層中,可應用於不同光色之磷、螢光元件。(2)可濕式製程,具有低成本、大面積製作之競爭潛力。
Organic light emitting diode (OLED) can be applied to high quality displays and solid-state lightings due to its self-luminous, low-power consumption, wide-viewing angle, lightness, thinness and flexibility. However, to make products more energy-efficient and with longer lifetime, high efficiency OLED research and development are critical. Besides developing new materials or changing device structures, modification can also be achieved by using additive elements. In this study, we incorporated gold nanoparticles into OLEDs, which notably improved the efficacy and the maximum brightness of green and blue devices. For example, the efficacy at 1,000 cd/m2 increases 24.8% (29.0→36.2 lm/W) and 35.0% (6.0→8.1 lm/W) while the max brightness increases 29.3% (21,500→27,800 cd/m2) and 24.3% (7,800→9,700 cd/m2) for green and blue device. These improvements may be attributed to the current density enhancement due to the incorporation of gold nanoparticles that strengthen the carrier injection.
In addition, the use of nanoparticles has following advantages: (1) It is added in non-emissive layer, thus it can be applied to either phosphorescence or fluorescence devices with different colors. (2) Its wet-processable characteristic provides competitive potential for low cost and large area production.
摘要 I
英文摘要 VI
目錄 VII
表目錄 X
圖目錄 XI
壹、緒論 1
貳、文獻回顧 3
2-1、有機發光二極體的歷史發展 3
2-2、有機發光二極體的發光原理 20
2-3、能量轉移機制 27
2-4、光色定義 31
2-5、元件效率 32
2-6壽命 35
2-7、奈米粒子強化OLED效率之發展 36
2-7-1、奈米粒子性質 36
2-7-2、金屬奈米粒子之添加 37
2-7-3、氧化物奈米粒子之添加 44
參、實驗方法 49
3-1、材料 49
3-1-1、材料之功能、化學式全名、簡稱及來源 50
3-1-2、有機材料之化學結構式 51
3-2、元件設計及製備 52
3-2-1、電路設計 52
3-2-2、基材前處理 52
3-2-3、濕式製備電洞注入層與發光層 53
3-2-4、蒸鍍裝置 54
3-2-5、鍍率測定 55
3-2-6、蒸鍍電子傳輸層與電子注入層 55
3-2-7、電極之製備 56
3-3、元件光電特性量測 57
肆、結果與討論 58
4-1、奈米金粒子之物理性質(長庚電子所劉國辰教授團隊提供) 58
4-2、奈米金粒子對綠光元件之影響 60
4-2-1、元件結構 60
4-2-2、濃度效應 61
4-2-2、粒徑效應 68
4-3、不同光色(紅、綠、藍)元件比較 73
4-3-1、元件能階結構 73
4-3-2、奈米金粒子對元件的影響 74
伍、結論 83
陸、參考文獻 84
1. O. Prache. "Active matrix molecular OLED microdisplays." Displays, 22, 49. (2001)
2. J. Y. Lee, J. H. Kwon and H. K. Chung. "High efficiency and low power consumption in active matrix organic light emitting diodes." Org Electron, 4, 143. (2003)
3. F. So, J. Kido and P. Burrows. "Organic light-emitting devices for solid-state lighting." Mrs Bull, 33, 663. (2008)
4. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park and K. Lee. "Flexible organic electroluminescent devices based on fluorine-containing colorless polyimide substrates." Adv Mater, 14, 1275. (2002)
5. J. Lewis, S. Grego, B. Chalamala, E. Vick and D. Temple. "Highly flexible transparent electrodes for organic light-emitting diode-based displays." Appl Phys Lett, 85, 3450. (2004)
6. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen and H. Y. Chen. "Solution-Processable, High-Molecule-Based Trifluoromethyl-Iridium Complex for Extraordinarily High Efficiency Blue-Green Organic Light-Emitting Diode." Chem Mater, 21, 2565. (2009)
7. A. Wan, J. Hwang, F. Amy and A. Kahn. "Impact of electrode contamination on the alpha-NPD/Au hole injection barrier." Org Electron, 6, 47. (2005)
8. J. X. Tang, C. S. Lee, S. T. Lee and Y. B. Xu. "Electronegativity and charge-injection barrier at organic/metal interfaces." Chem Phys Lett, 396, 92. (2004)
9. N. Koch, A. Elschner, J. Schwartz and A. Kahn. "Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current-voltage characteristics." Appl Phys Lett, 82, 2281. (2003)
10. J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue and C. C. Chiang. "Small polymeric nano-dot enhanced pure-white organic light-emitting diode." Org Electron, 9, 291. (2008)
11. J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue. "Nanodot-enhanced high-efficiency pure-white organic light-emitting diodes with mixed-host structures." Adv Funct Mater, 18, 121. (2008)
12. R. C. Kwong, S. Lamansky and M. E. Thompson. "Organic light-emitting devices based on phosphorescent hosts and dyes." Adv Mater, 12, 1134. (2000)
13. Z. Y. Xie, L. S. Hung and S. T. Lee. "High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure." Appl Phys Lett, 79, 1048. (2001)
14. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga. "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer." Appl Phys Lett, 79, 156. (2001)
15. F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang and L. Zuppiroli. "Doping-induced charge trapping in organic light-emitting devices." Adv Funct Mater, 15, 323. (2005)
16. J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li and R. S. Liu. "Efficient fluorescent white organic light-emitting diodes with blue-green host of di(4-fluorophenyl)amino-di(styryl)biphenyl." Org Electron, 8, 29. (2007)
17. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai and C. Chang. "Color-stable, efficient fluorescent pure-white organic light-emitting diodes with device architecture preventing excessive exciton formation on guest." Appl Phys Lett, 92. (2008)
18. A. Bernanose and P. Vouaux. "*Electroluminescence Organique - Etude Du Mode Demission." J Chim Phys Pcb, 50, 261. (1953)
19. M. Pope, P. Magnante and H. P. Kallmann. "Electroluminescence in Organic Crystals." J Chem Phys, 38, 2042. (1963)
20. W. Helfrich and Schneide.Wg. "Recombination Radiation in Anthracene Crystals." Phys Rev Lett, 14, 229. (1965)
21. W. Helfrich and Schneide.Wg. "Transients of Volume-Controlled Current and of Recombination Radiation in Anthracene." J Chem Phys, 44, 2902. (1966)
22. P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts. "Electrical-Conduction and Low-Voltage Blue Electro-Luminescence in Vacuum-Deposited Organic Films." Thin Solid Films, 94, 171. (1982)
23. R. H. Partridge. "Electro-Luminescence from Polyvinylcarbazole Films .1. Carbazole Cations." Polymer, 24, 733. (1983)
24. C. W. Tang and S. A. Vanslyke. "Organic Electroluminescent Diodes." Appl Phys Lett, 51, 913. (1987)
25. S. A. VanSlyke, C. W. Tang and L. C. Roberts. "Electroluminescent device with organic luminescent medium." US Patent, US4720432. (1988)
26. C. W. Tang, S. A. Vanslyke and C. H. Chen. "Electroluminescence of Doped Organic Thin-Films." J Appl Phys, 65, 3610. (1989)
27. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes. "Light-Emitting-Diodes Based on Conjugated Polymers." Nature, 347, 539. (1990)
28. R. H. Friend, J. H. Burroughes and D. D. Bradley. "Electroluminescent devices." US Patent, US5247190. (1993)
29. C. Adachi, S. Tokito, T. Tsutsui and S. Saito. "Organic Electroluminescent Device with a 3-Layer Structure." Jpn J Appl Phys 2, 27, L713. (1988)
30. M. Era, C. Adachi, T. Tsutsui and S. Saito. "Double-Heterostructure Electroluminescent Device with Cyanine-Dye Bimolecular Layer as an Emitter." Chem Phys Lett, 178, 488. (1991)
31. J. Kido, K. Hongawa, K. Okuyama and K. Nagai. "White Light-Emitting Organic Electroluminescent Devices Using the Poly(N-Vinylcarbazole) Emitter Layer Doped with 3 Fluorescent Dyes." Appl Phys Lett, 64, 815. (1994)
32. J. Kido, M. Kimura and K. Nagai. "Multilayer White Light-Emitting Organic Electroluminescent Device." Science, 267, 1332. (1995)
33. L. S. Hung, C. W. Tang and M. G. Mason. "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode." Appl Phys Lett, 70, 152. (1997)
34. G. E. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian. "Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices." Appl Phys Lett, 73, 1185. (1998)
35. J. Kido and T. Mizukami. "Organic electroluminescent devices." US Patent, US6013384. (2000)
36. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest. "Highly efficient phosphorescent emission from organic electroluminescent devices." Nature, 395, 151. (1998)
37. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest. "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device." J Appl Phys, 90, 5048. (2001)
38. J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo. "Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material." Appl Phys Lett, 73, 729. (1998)
39. J. Kido and T. Matsumoto. "Bright organic electroluminescent devices having a metal-doped electron-injecting layer." Appl Phys Lett, 73, 2866. (1998)
40. J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Y. Liu. "Low-voltage organic electroluminescent devices using pin structures." Appl Phys Lett, 80, 139. (2002)
41. L. S. Liao, K. P. Klubek and C. W. Tang. "High-efficiency tandem organic light-emitting diodes." Appl Phys Lett, 84, 167. (2004)
42. Y. Shao and Y. Yang. "White organic light-emitting diodes prepared by a fused organic solid solution method." Appl Phys Lett, 86. (2005)
43. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu. "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source." Appl Phys Lett, 88. (2006)
44. Y. Sun and S. R. Forrest. "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids." Nat Photonics, 2, 483. (2008)
45. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo. "White organic light-emitting diodes with fluorescent tube efficiency." Nature, 459, 234. (2009)
46. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu. "Unlocking the full potential of organic light-emitting diodes on flexible plastic." Nat Photonics, 5, 753. (2011)
47. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee. "Extremely efficient flexible organic light-emitting diodes with modified graphene anode." Nat Photonics, 6, 105. (2012)
48. J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen and C. H. Lin. "Candle Light-Style Organic Light-Emitting Diodes." Adv Funct Mater, 23, 2750. (2013)
49. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi. "Highly efficient organic light-emitting diodes from delayed fluorescence." Nature, 492, 234. (2012)
50. A. Dodabalapur. "Organic light emitting diodes." Solid State Commun, 102, 259. (1997)
51. W. D. Gill. "Drift Mobilities in Amorphous Charge-Transfer Complexes of Trinitrofluorenone and Poly-N-Vinylcarbazole." J Appl Phys, 43, 5033. (1972)
52. U. Wolf, V. I. Arkhipov and H. Bassler. "Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation." Phys Rev B, 59, 7507. (1999)
53. S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. F. Seidler and W. Riess. "Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation." Phys Rev B, 60, 8791. (1999)
54. E. Rossiter, P. Mark and M. A. Lampert. "Unusual Field Phenomena Associated with Majority-Carrier Injection from a Point Contact." Solid State Electron, 13, 491. (1970)
55. Murgatro.Pn. "Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect." J Phys D Appl Phys, 3, 151. (1970)
56. L. G. Thompson and S. E. Webber. "External Heavy Atom Effect on Phosphorescence Spectra of Some Halonaphthalenes." J Phys Chem-Us, 76, 221. (1972)
57. T. Forster. "*Zwischenmolekulare Energiewanderung Und Fluoreszenz." Ann Phys-Berlin, 2, 55. (1948)
58. D. L. Dexter. "A Theory of Sensitized Luminescence in Solids." J Chem Phys, 21, 836. (1953)
59. M. Klessinger and J. Michl. "Excited States and Photochemistry of Organic Molecules." VCH Publishers, New York. (1995)
60. C. I. d. l. E. (CIE). "Publication Report No.15.2." Colorimetry. (1986)
61. S. A. VanSlyke, C. H. Chen and C. W. Tang. "Organic electroluminescent devices with improved stability." Appl Phys Lett, 69, 2160. (1996)
62. C. Fery, B. Racine, D. Vaufrey, H. Doyeux and S. Cina. "Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes." Appl Phys Lett, 87. (2005)
63. P. Wellmann, M. Hofmann, O. Zeika, A. Werner, J. Birnstock, R. Meerheim, G. F. He, K. Walzer, M. Pfeiffer and K. Leo. "High-efficiency p-i-n organic light-emitting diodes with long lifetime." J Soc Inf Display, 13, 393. (2005)
64. D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko. "Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications." Chem Rev, 110, 389. (2010)
65. L. S. Li, J. T. Hu, W. D. Yang and A. P. Alivisatos. "Band gap variation of size- and shape-controlled colloidal CdSe quantum rods." Nano Lett, 1, 349. (2001)
66. A. T. Bell. "The impact of nanoscience on heterogeneous catalysis." Science, 299, 1688. (2003)
67. M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and C. B. Murray. "Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts." Science, 341, 771. (2013)
68. D. M. Wood. "Classical Size Dependence of the Work Function of Small Metallic Spheres." Phys Rev Lett, 46, 749. (1981)
69. L. Novotny and N. van Hulst. "Antennas for light." Nat Photonics, 5, 83. (2011)
70. H. Wang, D. W. Brandl, F. Le, P. Nordlander and N. J. Halas. "Nanorice: A hybrid plasmonic nanostructure." Nano Lett, 6, 827. (2006)
71. S. Stehlik, T. Petit, H. A. Girard, J. C. Arnault, A. Kromka and B. Rezek. "Nanoparticles Assume Electrical Potential According to Substrate, Size, and Surface Termination." Langmuir, 29, 1634. (2013)
72. Y. J. Zhang, O. Pluchery, L. Caillard, A. F. Lamic-Humblot, S. Casale, Y. J. Chaba and M. Salmeron. "Sensing the Charge State of Single Gold Nanoparticles via Work Function Measurements." Nano Lett, 15, 51. (2015)
73. C. J. Sun, Y. Wu, Z. H. Xu, B. Hu, J. M. Bai, J. P. Wang and J. Shen. "Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles." Appl Phys Lett, 90. (2007)
74. D. Liu, M. Fina, L. Ren and S. S. Mao. "Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer." Appl Phys a-Mater, 96, 353. (2009)
75. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito and Y. Kuwahara. "Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode." Appl Phys Lett, 96, 043307. (2010)
76. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li and J. X. Tang. "Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles." Appl Phys Lett, 100. (2012)
77. D. Wang, K. Yasui, M. Ozawa, K. Odoi, S. Shimamura and K. Fujita. "Hole injection enhancement by sparsely dispersed Au nanoparticles on indium tin oxide electrode in organic light emitting devices." Appl Phys Lett, 102. (2013)
78. M. Jung, D. M. Yoon, M. Kim, C. Kim, T. Lee, J. H. Kim, S. Lee, S. H. Lim and D. Woo. "Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode." Appl Phys Lett, 105. (2014)
79. Y. H. Lee, D. H. Kim and T. W. Kim. "Enhanced current efficiency of organic light-emitting devices due to a broad localized surface plasmonic resonance of Au–ZnO nanocomposites." Applied Surface Science, 355, 359. (2015)
80. S. A. Carter, J. C. Scott and P. J. Brock. "Enhanced luminance in polymer composite light emitting devices." Appl Phys Lett, 71, 1145. (1997)
81. V. Bliznyuk, B. Ruhstaller, P. J. Brock, U. Scherf and S. A. Carter. "Self-assembled nanocomposite polymer light-emitting diodes with improved efficiency and luminance." Adv Mater, 11, 1257. (1999)
82. J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M. Lai, S. Z. Chen, P. H. Wu, C. C. Chen, C. P. Liu and S. M. Shen. "Extraordinarily High Efficiency Improvement for OLEDs with High Surface-Charge Polymeric Nanodots." Acs Nano, 4, 4054. (2010)
83. H. Lee, I. Park, J. Kwak, D. Y. Yoon and C. Lee. "Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles." Appl Phys Lett, 96. (2010)
84. J. M. Moon, J. H. Bae, J. A. Jeong, S. W. Jeong, N. J. Park and H. K. Kim. "Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes." Appl Phys Lett, 90. (2007)
85. T. L. Chiu and P. Y. Lee. "Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host." Int J Mol Sci, 13, 7575. (2012)
86. 王健, 张福俊, 徐征 and 王永生. "蓝色磷光材料 FIrpic 的发光特性." 物理化学学报, 28, 949. (2012)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *