|
(1) Scrosati, B.; Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources2010, 195, 2419-2430. (2) Kim, I.; Kumta, P. N.; Blomgren, G. E.: Si / TiN nanocomposites - Novel anode materials for Li-ion batteries. Electrochemical and Solid State Letters2000, 3, 493-496. (3) Wilson, A. M.; Way, B. M.; Dahn, J. R.; Vanbuuren, T.: NANODISPERSED SILICON IN PREGRAPHITIC CARBONS. Journal of Applied Physics1995, 77, 2363-2369. (4) Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.: Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries. 2012, 85-116. (5) Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.: Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion. Journal of Solid State Chemistry2000, 153, 386-390. (6) Roberts, G. A.; Cairns, E. J.; Reimer, J. A.: Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources2002, 110, 424-429. (7) Kim, I.-s.; Blomgren, G. E.; Kumta, P. N.: Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling. Journal of Power Sources2004, 130, 275-280. (8) Noh, J.-H.; Lee, K.-Y.; Lee, J.-K.: Electrochemical characteristics of phosphorus doped Si-C composite for anode active material of lithium secondary batteries. Transactions of Nonferrous Metals Society of China2009, 19, 1018-1022. (9) Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia2003, 51, 1103-1113. (10) Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium–metal anodes. Journal of Power Sources2003, 119-121, 604-609. (11) Obrovac, M. N.; Christensen, L.: Structural Changes in Silicon Anodes during Lithium Insertion / Extraction. Electrochemical and Solid-State Letters2004, 7, A93. (12) Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces2010, 2, 3004-10. (13) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science2011, 334, 75-9. (14) Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T.: Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. The Journal of Physical Chemistry C2012, 116, 1380-1389. (15) Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W.: Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater2011, 23, 4679-83. (16) Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; Battaglia, V. S.; Yang, W.; Liu, G.: Toward an ideal polymer binder design for high-capacity battery anodes. Journal of the American Chemical Society2013, 135, 12048-56. (17) Szczech, J. R.; Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science2011, 4, 56. (18) Kim, H.; Han, B.; Choo, J.; Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl2008, 47, 10151-4. (19) Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A.: Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society2011, 133, 20914-21. (20) Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y.: Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem Commun (Camb)2011, 47, 367-9. (21) Chen, X.; Li, X.; Ding, F.; Xu, W.; Xiao, J.; Cao, Y.; Meduri, P.; Liu, J.; Graff, G. L.; Zhang, J. G.: Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett2012, 12, 4124-30. (22) Vlad, A.; Reddy, A. L.; Ajayan, A.; Singh, N.; Gohy, J. F.; Melinte, S.; Ajayan, P. M.: Roll up nanowire battery from silicon chips. Proc Natl Acad Sci U S A2012, 109, 15168-73. (23) Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y.: Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science2012, 5, 7927. (24) Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett2011, 11, 2949-54. (25) Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J.: Silicon Nanotube Battery Anodes. Nano Letters2009, 9, 3844-3847. (26) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol2012, 7, 310-5. (27) Wang, X. L.; Han, W. Q.: Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. ACS Appl Mater Interfaces2010, 2, 3709-13. (28) Qu, Y.; Zhou, H.; Duan, X.: Porous silicon nanowires. Nanoscale2011, 3, 4060-8. (29) Ge, M.; Rong, J.; Fang, X.; Zhou, C.: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett2012, 12, 2318-23. (30) Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q.: Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Scientific reports2013, 3, 1568. (31) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y.: Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed Engl2012, 51, 2409-13. (32) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y.: Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett2012, 12, 904-9. (33) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y.: A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett2012, 12, 3315-21. (34) Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U.: Metal-assisted chemical etching of silicon: a review. Adv Mater2011, 23, 285-308. (35) Möller, K.; Kobler, J.; Bein, T.: Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Advanced Functional Materials2007, 17, 605-612. (36) Wang, J.; Sugawara-Narutaki, A.; Shimojima, A.; Okubo, T.: Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. Journal of colloid and interface science2012, 385, 41-7. (37) Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z.; Abernathy, H. W., 3rd; Summers, C. J.; Liu, M.; Sandhage, K. H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature2007, 446, 172-5. (38) 陳鴻博: 以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製備矽膠之影響. 中原大學. (39) Chen, W.; Fan, Z.; Dhanabalan, A.; Chen, C.; Wang, C.: Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries. Journal of The Electrochemical Society2011, 158, A1055.
|