帳號:guest(3.149.255.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊育碩
論文名稱(中文):以田口法最佳化多孔矽奈米粉末合成參數以改善鋰離子電池陽極材料充放電性質
論文名稱(外文):Using Taguchi method to optimize the synthesis processes of porous silicon nanoparticles as anode materials for lithium ion batteries.
指導教授(中文):蔡哲正
口試委員(中文):林居南
顏光甫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031553
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:鋰離子電池矽基陽極田口法多孔奈米材料
相關次數:
  • 推薦推薦:0
  • 點閱點閱:702
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
能量存儲系統已經成為用於解決石油危機的關鍵技術,而鋰離子電池具有較高的理論能量和功率密度,因此為相當有發展潛力的能量存儲系統之一。其中理離子電池中的矽基負極材料因為其高理論電容量而被廣泛研究,但因其充放電過程中會有300 %體積膨脹,造成電池循環壽命不佳。
本研究使用田口方法來使多孔二氧化矽奈米顆粒合成參數最佳化,以提高在鋰離子電池的循環壽命性能。其中二氧化矽合成中,存在CTACl/TEOS = 0.058的最佳比例以形成奈米顆粒的孔隙。且存在最佳TOEA/TEA = 0.25,以形成最小的顆粒。在鎂還原的製程中,對於循環壽命性能最好的參數是:外壓= 0.75 torr、Mg/SiO2 = 4、溫度= 625 oC、時間= 6小時。
將兩個最佳參數結合後,得到具有高表面積(394 m2/g)的矽奈米粉末以及decay百分比為40 %的電性表現。並將二氧化矽和成田口法中比表面積最大(L5)、中間(L2)以及最小(L8)分別利用L5參數還原作電性比較。最終我們得出結論,有較高孔隙率以及孔體積的奈米顆粒對於循環壽命表現的影響小於顆粒大小對電性表現的影響。
Energy storage system has become a critical technology for solving the oil crisis, and the lithium ion battery is one of the promising energy storage systems owing to the high theoretical energy and power density. Moreover, Silicon – based anode materials for lithium ion battery have been widely studied in recent years because the high specific capacities of silicon.
This study uses Taguchi method to optimize the synthesis processes of porous silicon nanoparticles to improve the cycle life performance in lithium ion batteries. In the processes of SiO2 synthesis, there is a best ratio of CTACl / TEOS, 0.058, to form pores in nanoparticles, and a ratio of TOEA / TEA to form minimum particles. In the processes of Mg reduction, the best parameters for cycle life performance are: Outer pressure = 0.75 torr, Mg / SiO2 = 4, temperature = 625 oC, time = 6 hr.
We conclude that the effect of porosity with large pore volume is less effective than that of particle size on the cycle life performance.
Abstract i
摘 要 ii
內文目錄 iii
圖目錄 vi
表目錄 x
第一章:緒論 1
第二章:實驗步驟 11
2.1 TEOS / water 兩相溶液合成法合成多孔二氧化矽奈米球 12
2.1.1 合成原理 12
2.1.1.1 TEOS的水解反應 12
2.1.1.2 TEOS的縮合反應 13
2.1.1.3 介面活性劑CTACl之作用 13
2.1.2 製程參數設定 14
2.1.3 實驗步驟 15
2.1.4 BET (Brunauer-Emmett-Teller)比表面積測量 15
2.2 鎂金屬還原多孔二氧化矽奈米球 18
2.2.1 製程參數設定 18
2.2.2 實驗步驟 18
2.3 選擇性蝕刻純化 20
2.3.1 去除MgO、Mg 20
2.3.2 去除二氧化矽 20
2.4 電極製備 21
2.5 電極裁片 21
2.6 電池組裝 21
2.7 循環壽命測試 21
2.8 掃描式電子顯微鏡 22
2.9 X-ray繞射分析 22
2.10 田口實驗法 (Taguchi method) 22
2.10.1 正交表 22
2.10.2 目標值 (goal value) 23
2.10.3 S / N ratio 23
2.10.4 因子效應 25
2.10.5 田口法使用限制 25
第三章:結果與討論 26
3.1 TEOS / water兩相溶液法合成多孔二氧化矽奈米球 26
3.1.1 田口法統計結果 26
3.1.2 pH值調控對比表面積之影響 28
3.1.3 TEOS / TEA 比例改變對比表面積之影響 32
3.2 鎂金屬還原多孔二氧化矽奈米球 36
3.2.1 田口法統計結果 36
3.2.2 單變數調控Mg / SiO2比例、溫度對還原結果之影響 42
3.3 多孔二氧化矽結合鎂還原製程之電化學表現 46
3.3.1 以L5 (S)合成參數+ L5 (R)還原參數之充放電表現 46
3.3.1.1 經高溫鎂還原後多孔結構的改變 48
3.3.1.2 表面孔洞對還原過程之影響 50
3.3.2 材料比表面積對循環壽命的影響 53
3.3.2.1 鎂還原過程對孔洞體積之改變 54
3.3.2.2 鎂還原過程對顆粒形貌、顆粒大小之改變 57
3.3.2.3 顆粒大小、孔洞體積影響電容量decay百分比表現之比較……………………………………………………………………..60
第四章:結論 63
第五章:參考文獻 65
(1) Scrosati, B.; Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources2010, 195, 2419-2430.
(2) Kim, I.; Kumta, P. N.; Blomgren, G. E.: Si / TiN nanocomposites - Novel anode materials for Li-ion batteries. Electrochemical and Solid State Letters2000, 3, 493-496.
(3) Wilson, A. M.; Way, B. M.; Dahn, J. R.; Vanbuuren, T.: NANODISPERSED SILICON IN PREGRAPHITIC CARBONS. Journal of Applied Physics1995, 77, 2363-2369.
(4) Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.: Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries. 2012, 85-116.
(5) Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.: Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion. Journal of Solid State Chemistry2000, 153, 386-390.
(6) Roberts, G. A.; Cairns, E. J.; Reimer, J. A.: Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources2002, 110, 424-429.
(7) Kim, I.-s.; Blomgren, G. E.; Kumta, P. N.: Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling. Journal of Power Sources2004, 130, 275-280.
(8) Noh, J.-H.; Lee, K.-Y.; Lee, J.-K.: Electrochemical characteristics of phosphorus doped Si-C composite for anode active material of lithium secondary batteries. Transactions of Nonferrous Metals Society of China2009, 19, 1018-1022.
(9) Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia2003, 51, 1103-1113.
(10) Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium–metal anodes. Journal of Power Sources2003, 119-121, 604-609.
(11) Obrovac, M. N.; Christensen, L.: Structural Changes in Silicon Anodes during Lithium Insertion / Extraction. Electrochemical and Solid-State Letters2004, 7, A93.
(12) Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G.: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces2010, 2, 3004-10.
(13) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science2011, 334, 75-9.
(14) Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T.: Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. The Journal of Physical Chemistry C2012, 116, 1380-1389.
(15) Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W.: Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater2011, 23, 4679-83.
(16) Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; Battaglia, V. S.; Yang, W.; Liu, G.: Toward an ideal polymer binder design for high-capacity battery anodes. Journal of the American Chemical Society2013, 135, 12048-56.
(17) Szczech, J. R.; Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science2011, 4, 56.
(18) Kim, H.; Han, B.; Choo, J.; Cho, J.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed Engl2008, 47, 10151-4.
(19) Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A.: Silicon nanowire fabric as a lithium ion battery electrode material. Journal of the American Chemical Society2011, 133, 20914-21.
(20) Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y.: Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem Commun (Camb)2011, 47, 367-9.
(21) Chen, X.; Li, X.; Ding, F.; Xu, W.; Xiao, J.; Cao, Y.; Meduri, P.; Liu, J.; Graff, G. L.; Zhang, J. G.: Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes. Nano Lett2012, 12, 4124-30.
(22) Vlad, A.; Reddy, A. L.; Ajayan, A.; Singh, N.; Gohy, J. F.; Melinte, S.; Ajayan, P. M.: Roll up nanowire battery from silicon chips. Proc Natl Acad Sci U S A2012, 109, 15168-73.
(23) Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y.: Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science2012, 5, 7927.
(24) Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett2011, 11, 2949-54.
(25) Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J.: Silicon Nanotube Battery Anodes. Nano Letters2009, 9, 3844-3847.
(26) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol2012, 7, 310-5.
(27) Wang, X. L.; Han, W. Q.: Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. ACS Appl Mater Interfaces2010, 2, 3709-13.
(28) Qu, Y.; Zhou, H.; Duan, X.: Porous silicon nanowires. Nanoscale2011, 3, 4060-8.
(29) Ge, M.; Rong, J.; Fang, X.; Zhou, C.: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett2012, 12, 2318-23.
(30) Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q.: Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Scientific reports2013, 3, 1568.
(31) Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y.: Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed Engl2012, 51, 2409-13.
(32) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y.: Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett2012, 12, 904-9.
(33) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y.: A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett2012, 12, 3315-21.
(34) Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U.: Metal-assisted chemical etching of silicon: a review. Adv Mater2011, 23, 285-308.
(35) Möller, K.; Kobler, J.; Bein, T.: Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Advanced Functional Materials2007, 17, 605-612.
(36) Wang, J.; Sugawara-Narutaki, A.; Shimojima, A.; Okubo, T.: Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. Journal of colloid and interface science2012, 385, 41-7.
(37) Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z.; Abernathy, H. W., 3rd; Summers, C. J.; Liu, M.; Sandhage, K. H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature2007, 446, 172-5.
(38) 陳鴻博: 以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製備矽膠之影響. 中原大學.
(39) Chen, W.; Fan, Z.; Dhanabalan, A.; Chen, C.; Wang, C.: Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries. Journal of The Electrochemical Society2011, 158, A1055.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *