|
1. Hermes, C.; Bruchhaus, R.; Waser, R., Forming-Free TiO2-Based Resistive Switching Devices on CMOS-Compatible W-Plugs. Ieee Electron Device Letters 2011, 32 (11), 1588-1590. 2. Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S.; Kim, M.; Hwang, C. S., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 2010, 5 (2), 148-53. 3. Li, Y. T.; Long, S. B.; Lv, H. B.; Liu, Q.; Wang, Y.; Zhang, S.; Lian, W. T.; Wang, M.; Zhang, K. W.; Xie, H. W.; Liu, S.; Liu, M., Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology 2011, 22 (25). 4. Chen, Y. S.; Lee, H. Y.; Chen, P. S.; Wu, T. Y.; Wang, C. C.; Tzeng, P. J.; Chen, F.; Tsai, M. J.; Lien, C., An Ultrathin Forming-Free HfOx Resistance Memory With Excellent Electrical Performance. Ieee Electron Device Letters 2010, 31 (12), 1473-1475. 5. Liu, X.; Sadaf, S. M.; Son, M.; Park, J.; Shin, J.; Lee, W.; Seo, K.; Lee, D.; Hwang, H., Co-Occurrence of Threshold Switching and Memory Switching in Pt/NbOx/Pt Cells for Crosspoint Memory Applications. Ieee Electron Device Letters 2012, 33 (2), 236-238. 6. Lee, M.-J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y.-B.; Kim, C.-J.; Seo, D. H.; Seo, S.; Chung, U. I.; Yoo, I.-K.; Kim, K., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat Mater 2011, 10 (8), 625-630. 7. Chien, W. C.; Lee, F. M.; Lin, Y. Y.; Lee, M. H.; Chen, S. H.; Hsieh, C. C.; Lai, E. K.; Hui, H. H.; Huang, Y. K.; Yu, C. C.; Chen, C. F.; Lung, H. L.; Hsieh, K. Y.; Chih-Yuan, L. In Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM, VLSI Technology (VLSIT), 2012 Symposium on, 12-14 June 2012; 2012; pp 153-154. 8. Chang, S. H.; Chae, S. C.; Lee, S. B.; Liu, C.; Noh, T. W.; Lee, J. S.; Kahng, B.; Jang, J. H.; Kim, M. Y.; Kim, D.-W.; Jung, C. U., Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors. Applied Physics Letters 2008, 92 (18), -. 9. Yasuhara, R.; Fujiwara, K.; Horiba, K.; Kumigashira, H.; Kotsugi, M.; Oshima, M.; Takagi, H., Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Applied Physics Letters 2009, 95 (1), 012110. 10. Chang, W.-Y.; Lai, Y.-C.; Wu, T.-B.; Wang, S.-F.; Chen, F.; Tsai, M.-J., Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications. Applied Physics Letters 2008, 92 (2), 022110-022110-3. 11. Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R., Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 2006, 5 (4), 312-20. 12. Shuai, Y.; Ou, X.; Luo, W. B.; Mucklich, A.; Burger, D.; Zhou, S. Q.; Wu, C. G.; Chen, Y. F.; Zhang, W. L.; Helm, M.; Mikolajick, T.; Schmidt, O. G.; Schmidt, H., Key concepts behind forming-free resistive switching incorporated with rectifying transport properties. Scientific Reports 2013, 3. 13. Sawa, A.; Fujii, T.; Kawasaki, M.; Tokura, Y., Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Applied Physics Letters 2004, 85 (18), 4073-4075. 14. Waser, R.; Aono, M., Nanoionics-based Resistive Switching Memories. Nature Materials 2007, 6 (11), 833-840. 15. Yang, J. J.; Strachan, J. P.; Xia, Q.; Ohlberg, D. A.; Kuekes, P. J.; Kelley, R. D.; Stickle, W. F.; Stewart, D. R.; Medeiros-Ribeiro, G.; Williams, R. S., Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv Mater 2010, 22 (36), 4034-8. 16. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials 2009, 21 (25-26), 2632-2663. 17. Miao, F.; Strachan, J. P.; Yang, J. J.; Zhang, M.-X.; Goldfarb, I.; Torrezan, A. C.; Eschbach, P.; Kelley, R. D.; Medeiros-Ribeiro, G.; Williams, R. S., Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor. Advanced Materials 2011, 23 (47), 5633-5640. 18. Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A.; Stewart, D. R.; Williams, R. S., Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 2008, 3 (7), 429-33. 19. Pickett, M. D.; Borghetti, J.; Yang, J. J.; Medeiros-Ribeiro, G.; Williams, R. S., Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv Mater 2011, 23 (15), 1730-3. 20. Kyung Min, K.; Doo Seok, J.; Cheol Seong, H., Nanofilamentary Resistive Switching in Binary Oxide System; a Review on the Rresent Status and Outlook. Nanotechnology 2011, 22, 254002. 21. Kügeler, C.; Meier, M.; Rosezin, R.; Gilles, S.; Waser, R., High density 3D memory architecture based on the resistive switching effect. Solid-State Electronics 2009, 53 (12), 1287-1292. 22. Cui, Y.; Lieber, C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291 (5505), 851-3. 23. Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291 (5504), 630-3. 24. Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M., Logic Gates and Computation from Assembled Nanowire Building Blocks. Science 2001, 294 (5545), 1313-1317. 25. Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M., Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302 (5649), 1377-9. 26. Duan, X.; Huang, Y.; Lieber, C. M., Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires. Nano Letters 2002, 2 (5), 487-490. 27. Dong, Y.; Yu, G.; McAlpine, M. C.; Lu, W.; Lieber, C. M., Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches. Nano Letters 2008, 8 (2), 386-391. 28. Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nat Mater 2007, 6 (11), 841-850. 29. Kim, S. I.; Lee, J. H.; Chang, Y. W.; Hwang, S. S.; Yoo, K.-H., Reversible Resistive Switching Behaviors in NiO Nanowires. Applied Physics Letters 2008, 93 (3), 033503. 30. Oka, K.; Yanagida, T.; Nagashima, K.; Tanaka, H.; Kawai, T., Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires. Journal of the American Chemical Society 2009, 131 (10), 3434-3435. 31. Oka, K.; Yanagida, T.; Nagashima, K.; Kawai, T.; Kim, J.-S.; Park, B. H., Resistive-Switching Memory Effects of NiO Nanowire/Metal Junctions. Journal of the American Chemical Society 2010, 132 (19), 6634-6635. 32. Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P., Bipolar resistive switching in individual Au–NiO–Au segmented nanowires. Applied Physics Letters 2009, 95 (20), 203505. 33. He, L.; Liao, Z. M.; Wu, H. C.; Tian, X. X.; Xu, D. S.; Cross, G. L.; Duesberg, G. S.; Shvets, I. V.; Yu, D. P., Memory and threshold resistance switching in Ni/NiO core-shell nanowires. Nano Lett 2011, 11 (11), 4601-6. 34. Weilie Zhou, Z. L. W., Scanning Microscopy for Nanotechnology. Springer New York: 2007. 35. http://en.wikipedia.org/wiki/Transmission_electron_microscopy. 36. David B. Williams, C. B. C., Transmission Electron Microscopy. 2nd ed.; Springer US: 2009. 37. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope. 3rd ed.; Springer 2011. 38. Sawa, A., Resistive Switching in Transition Metal Oxides. Materials Today 2008, 11 (6), 28-36. 39. Yang, J. J.; Strukov, D. B.; Stewart, D. R., Memristive Devices for Computing. Nat Nano 2013, 8 (1), 13-24. 40. Baek, I. G.; Lee, M. S.; Seo, S.; Lee, M. J.; Seo, D. H.; Suh, D. S.; Park, J. C.; Park, S. O.; Kim, H. S.; Yoo, I. K.; Chung, U. I.; Moon, J. T. In Highly Scalable Nonvolatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 13-15 Dec. 2004; 2004; pp 587-590. 41. Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H. J.; Hwang, C. S.; Szot, K.; Waser, R.; Reichenberg, B.; Tiedke, S., Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition. Journal of Applied Physics 2005, 98 (3), 033715-10. 42. Huang, C.-H.; Huang, J.-S.; Lin, S.-M.; Chang, W.-Y.; He, J.-H.; Chueh, Y.-L., ZnO1–x Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application. ACS Nano 2012, 6 (9), 8407-8414. 43. Tzu-Ning, F.; Kaza, S.; Haddad, S.; An, C.; Yi-Ching, W.; Zhida, L.; Avanzino, S.; Dongxiang, L.; Gopalan, C.; Seungmoo, C.; Mahdavi, S.; Buynoski, M.; Lin, Y.; Marrian, C.; Bill, C.; VanBuskirk, M.; Taguchi, M. In Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with Nickel Electrode, Electron Devices Meeting, 2006. IEDM '06. International, 11-13 Dec. 2006; 2006. 44. Qi, J.; Olmedo, M.; Ren, J.; Zhan, N.; Zhao, J.; Zheng, J.-G.; Liu, J., Resistive Switching in Single Epitaxial ZnO Nanoislands. ACS Nano 2012, 6 (2), 1051-1058. 45. Nagashima, K.; Yanagida, T.; Oka, K.; Kanai, M.; Klamchuen, A.; Kim, J.-S.; Park, B. H.; Kawai, T., Intrinsic Mechanisms of Memristive Switching. Nano Letters 2011, 11 (5), 2114-2118. 46. Nagashima, K.; Yanagida, T.; Oka, K.; Kanai, M.; Klamchuen, A.; Rahong, S.; Meng, G.; Horprathum, M.; Xu, B.; Zhuge, F.; He, Y.; Park, B. H.; Kawai, T., Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Letters 2012, 12 (11), 5684-5690. 47. Oka, K.; Yanagida, T.; Nagashima, K.; Kanai, M.; Kawai, T.; Kim, J.-S.; Park, B. H., Spatial Nonuniformity in Resistive-Switching Memory Effects of NiO. Journal of the American Chemical Society 2011, 133 (32), 12482-12485. 48. Ielmini, D.; Cagli, C.; Nardi, F.; Zhang, Y., Nanowire-based Resistive Switching Memories: Devices, Operation and Scaling. Journal of Physics D: Applied Physics 2013, 46 (7), 074006. 49. Hu, J.; Odom, T. W.; Lieber, C. M., Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research 1999, 32 (5), 435-445. 50. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389. 51. Barth, J. V.; Costantini, G.; Kern, K., Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437 (7059), 671-9. 52. Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J.-S.; Park, B. H., Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire. Nano Letters 2010, 10 (4), 1359-1363. 53. Chiang, Y. D.; Chang, W. Y.; Ho, C. Y.; Chen, C. Y.; Ho, C. H.; Lin, S. J.; Wu, T. B.; He, J. H., Single-ZnO-Nanowire Memory. Ieee Transactions on Electron Devices 2011, 58 (6), 1735-1740. 54. Yang, Y. C.; Zhang, X. X.; Gao, M.; Zeng, F.; Zhou, W. Y.; Xie, S. S.; Pan, F., Nonvolatile Resistive Switching in Single Crystalline ZnO Nanowires. Nanoscale 2011, 3 (4), 1917-1921. 55. Deng, X. L.; Hong, S.; Hwang, I.; Kim, J. S.; Jeon, J. H.; Park, Y. C.; Lee, J.; Kang, S. O.; Kawai, T.; Park, B. H., Confining Grains of Textured Cu2O Films to Single-Crystal Nanowires and Resultant Change in Resistive Switching Characteristics. Nanoscale 2012, 4 (6), 2029-33. 56. Dong, H.; Zhang, X.; Zhao, D.; Niu, Z.; Zeng, Q.; Li, J.; Cai, L.; Wang, Y.; Zhou, W.; Gao, M.; Xie, S., High Performance Bipolar Resistive Switching Memory Devices Based on Zn2SnO4 Nanowires. Nanoscale 2012, 4 (8), 2571-2574. 57. Hsu, C. W.; Chou, L. J., Bipolar Resistive Switching of Single Gold-in-Ga2O3 Nanowire. Nano Lett 2012, 12 (8), 4247-53. 58. Teichert, C., Self-organization of nanostructures in semiconductor heteroepitaxy. Physics Reports 2002, 365 (5–6), 335-432. 59. Lai, C.-c.; Lin, Y.-K.; Yuan, F.-W.; Tuan, H.-Y.; Chueh, Y.-L., High-Density Germanium Nanowire Arrays via Supercritical Fluid-Liquid-Solid Growth in Porous Alumina Templates. Ecs Solid State Letters 2013, 2 (7), P55-P57. 60. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast Fabrication of Long-range Ordered Porous Alumina Membranes by Hard Anodization. Nat Mater 2006, 5 (9), 741-7. 61. Masuda, H.; Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268 (5216), 1466-1468. 62. Huang, Q.; Lilley, C. M.; Bode, M.; Divan, R., Surface and Size Effects on the Electrical Properties of Cu Nanowires. Journal of Applied Physics 2008, 104 (2), 023709-023709-6. 63. Mu, C.; He, J., Confined Conversion of CuS Nanowires to CuO Nanotubes by Annealing-induced Diffusion in Nanochannels. Nanoscale research letters 2011, 6 (1), 150. 64. Chen, A.; Haddad, S.; Wu, Y. C.; Lan, Z.; Fang, T. N.; Kaza, S., Switching Characteristics of Cu2O Metal-Insulator-Metal Resistive Memory. Applied Physics Letters 2007, 91 (12), 123517. 65. Chen, A.; Haddad, S.; Wu, Y. C.; Fang, T. N.; Kaza, S.; Lan, Z., Erasing Characteristics of Cu2O Metal-Insulator-Metal Resistive Switching Memory. Applied Physics Letters 2008, 92 (1), 013503. 66. Yang, W.-Y.; Kim, W.-G.; Rhee, S.-W., Radio Frequency Sputter Deposition of Single Phase Cuprous Oxide Using Cu2O as a Target Material and its Resistive Switching Properties. Thin Solid Films 2008, 517 (2), 967-971. 67. Lv, H.; Wang, M.; Wan, H.; Song, Y.; Luo, W.; Zhou, P.; Tang, T.; Lin, Y.; Huang, R.; Song, S.; Wu, J. G.; Wu, H. M.; Chi, M. H., Endurance Enhancement of Cu-oxide Based Resistive Switching Memory with Al Top Electrode. Applied Physics Letters 2009, 94 (21), 213502. 68. Kim, C. H.; Jang, Y. H.; Hwang, H. J.; Sun, Z. H.; Moon, H. B.; Cho, J. H., Observation of Bistable Resistance Memory Switching in CuO Thin Films. Applied Physics Letters 2009, 94 (10), 102107. 69. Kang, S.-O.; Hong, S.; Choi, J.; Kim, J.-S.; Hwang, I.; Byun, I.-S.; Yun, K.-S.; Park, B. H., Electrochemical Growth and Resistive Switching of Flat-surfaced and (111)-oriented Cu2O Films. Applied Physics Letters 2009, 95 (9), 092108. 70. Fujiwara, K.; Nemoto, T.; Rozenberg, M. J.; Nakamura, Y.; Takagi, H., Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices. Japanese Journal of Applied Physics 2008, 47 (No. 8), 6266-6271. 71. Lampert, M. A., Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Physical Review 1956, 103 (6), 1648-1656. 72. Yang, J. J.; Inoue, I. H.; Mikolajick, T.; Hwang, C. S., Metal Oxide Memories Based on Thermochemical and Valence Change Mechanisms. Mrs Bull 2012, 37 (02), 131-137. 73. Chang, W.-Y.; Cheng, K.-J.; Tsai, J.-M.; Chen, H.-J.; Chen, F.; Tsai, M.-J.; Wu, T.-B., Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied Physics Letters 2009, 95 (4), -. 74. Yoon, D. H.; Kim, S. J.; Jung, J.; Lim, H. S.; Kim, H. J., Low-voltage Driving Solution-processed Nickel Oxide Based Unipolar Resistive Switching Memory with Ni Nanoparticles. Journal of Materials Chemistry 2012, 22 (34), 17568-17572. 75. Huang, C.-H.; Huang, J.-S.; Lai, C.-C.; Huang, H.-W.; Lin, S.-J.; Chueh, Y.-L., Manipulated Transformation of Filamentary and Homogeneous Resistive Switching on ZnO Thin Film Memristor with Controllable Multistate. ACS Applied Materials & Interfaces 2013, 5 (13), 6017-6023. 76. Johnson, S. L.; Sundararajan, A.; Hunley, D. P.; Strachan, D. R., Memristive switching of single-component metallic nanowires. Nanotechnology 2010, 21 (12). 77. Choi, S.-J.; Moon, D.-I.; Duarte, J. P.; Ahn, J.-H.; Choi, Y.-K., Physical Observation of a Thermo-Morphic Transition in a Silicon Nanowire. Acs Nano 2012, 6 (3), 2378-2384. 78. Horiba, K.; Fujiwara, K.; Nagamura, N.; Toyoda, S.; Kumigashira, H.; Oshima, M.; Takagi, H., Observation of rebirth of metallic paths during resistance switching of metal nanowire. Applied Physics Letters 2013, 103 (19), 193114. 79. Ielmini, D., Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth. Ieee Transactions on Electron Devices 2011, 58 (12), 4309-4317. 80. Ielmini, D.; Nardi, F.; Cagli, C., Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM. Ieee Transactions on Electron Devices 2011, 58 (10), 3246-3253.
|