帳號:guest(3.14.129.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁凱迪
論文名稱(中文):單根氧化銅奈米線電阻式記憶體之合成與研究分析
論文名稱(外文):Synthesis and Characterization of Single CuOx Nanowire Resistive Random Access Memory
指導教授(中文):闕郁倫
口試委員(中文):蔡銘進
曾俊元
謝光宇
闕郁倫
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031549
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:62
中文關鍵詞:電阻式記憶體奈米線
相關次數:
  • 推薦推薦:0
  • 點閱點閱:562
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本論文根據氧化銅奈米線探討電阻轉換的現象,藉由一維奈米尺寸的微觀材料分析,提出可能的阻態轉換機制。
本論文的第一部份利用規則排列的奈米多孔性陽極氧化鋁薄膜(Anodic Aluminum Oxide;AAO)作為模板,以脈衝電鍍法的方式合成銅奈米線陣列,然後將其在氧環境下加溫氧化,製備出大規模且具有一致性的氧化銅奈米線(nanowire)陣列,並在單根氧化銅奈米線元件發現無極性(nonpolar) 的電阻轉換特性,其高低阻值比(on/off ratio)大於103,低操作電壓(< 2.5 V),可連續操作50次循環,值得一題的是,此一奈米線元件不需額外的電致形成操作(electroforming),具有潛力發展成奈米線電阻式記憶體元件。
第二部分則嘗試將化學液相合成的銅奈米線於大氣室溫環境下,藉由電性操作直接氧化並發現雙極性(bipolar)的電阻轉換現象,根據數據統計結果發現造成氧化的電流密度落在特定範圍,顯示此一方法具有重複再現的可能,其高低阻值比大於103,低操作電壓(< 1 V),可連續操作100次循環,未來希望可以調控氧化阻態,並應用在銅奈米線陣列,達到可選區直接氧化的目標。
摘要 I
Abstract II
Contents III
List of Figures V
List of Tables X
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Objectives of this study 3
Chapter 2 Literature Review 5
2.1 Resistive RAM 5
2.1-1 Devices performance criteria of ReRAM 5
2.2 Classification of resistive switching characteristics 7
2.2-1 Switching polarity 7
2.2-2 Switching mechanisms 9
2.2-3 Electroforming process 12
2.3 Nanowire-based ReRAM 14
2.3-1 Switching in metal-oxide NWs 14
2.3-2 Switching in segmented metal-oxide NWs 17
2.3-3 Switching in core-shell NWs 18
Chapter 3 Experimental Techniques 20
3.1 Material and electrical analysis 20
3.1-1 X-ray diffractometer 20
3.1-2 Field-emission scanning electron microscopy 20
3.1-3 Field-emission transmission electron microscopy 22
3.1-4 Electron energy loss spectroscopy 24
3.1-5 Keithley 4200 semiconductor analyzer 27
Chapter 4 Single CuOx Nanowire Memristor: Forming-Free Resistive Switching Behavior 28
4.1 Motivation 28
4.2 Experimental Procedures 30
4.2.1 Sample Fabrication 30
4.2.2 Material and Electrical Characterization 32
4.3 Results and Discussion 33
4.4 Summary 48
Chapter 5 Direct Current-Induced Oxidization of Metallic Nanowires and their Resistive Switching Properties 49
5.1 Motivation 49
5.2 Results and Discussion 50
5.3 Summary 55
References 56
1. Hermes, C.; Bruchhaus, R.; Waser, R., Forming-Free TiO2-Based Resistive Switching Devices on CMOS-Compatible W-Plugs. Ieee Electron Device Letters 2011, 32 (11), 1588-1590.
2. Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S.; Kim, M.; Hwang, C. S., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 2010, 5 (2), 148-53.
3. Li, Y. T.; Long, S. B.; Lv, H. B.; Liu, Q.; Wang, Y.; Zhang, S.; Lian, W. T.; Wang, M.; Zhang, K. W.; Xie, H. W.; Liu, S.; Liu, M., Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology 2011, 22 (25).
4. Chen, Y. S.; Lee, H. Y.; Chen, P. S.; Wu, T. Y.; Wang, C. C.; Tzeng, P. J.; Chen, F.; Tsai, M. J.; Lien, C., An Ultrathin Forming-Free HfOx Resistance Memory With Excellent Electrical Performance. Ieee Electron Device Letters 2010, 31 (12), 1473-1475.
5. Liu, X.; Sadaf, S. M.; Son, M.; Park, J.; Shin, J.; Lee, W.; Seo, K.; Lee, D.; Hwang, H., Co-Occurrence of Threshold Switching and Memory Switching in Pt/NbOx/Pt Cells for Crosspoint Memory Applications. Ieee Electron Device Letters 2012, 33 (2), 236-238.
6. Lee, M.-J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y.-B.; Kim, C.-J.; Seo, D. H.; Seo, S.; Chung, U. I.; Yoo, I.-K.; Kim, K., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat Mater 2011, 10 (8), 625-630.
7. Chien, W. C.; Lee, F. M.; Lin, Y. Y.; Lee, M. H.; Chen, S. H.; Hsieh, C. C.; Lai, E. K.; Hui, H. H.; Huang, Y. K.; Yu, C. C.; Chen, C. F.; Lung, H. L.; Hsieh, K. Y.; Chih-Yuan, L. In Multi-layer sidewall WOX resistive memory suitable for 3D ReRAM, VLSI Technology (VLSIT), 2012 Symposium on, 12-14 June 2012; 2012; pp 153-154.
8. Chang, S. H.; Chae, S. C.; Lee, S. B.; Liu, C.; Noh, T. W.; Lee, J. S.; Kahng, B.; Jang, J. H.; Kim, M. Y.; Kim, D.-W.; Jung, C. U., Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors. Applied Physics Letters 2008, 92 (18), -.
9. Yasuhara, R.; Fujiwara, K.; Horiba, K.; Kumigashira, H.; Kotsugi, M.; Oshima, M.; Takagi, H., Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Applied Physics Letters 2009, 95 (1), 012110.
10. Chang, W.-Y.; Lai, Y.-C.; Wu, T.-B.; Wang, S.-F.; Chen, F.; Tsai, M.-J., Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications. Applied Physics Letters 2008, 92 (2), 022110-022110-3.
11. Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R., Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 2006, 5 (4), 312-20.
12. Shuai, Y.; Ou, X.; Luo, W. B.; Mucklich, A.; Burger, D.; Zhou, S. Q.; Wu, C. G.; Chen, Y. F.; Zhang, W. L.; Helm, M.; Mikolajick, T.; Schmidt, O. G.; Schmidt, H., Key concepts behind forming-free resistive switching incorporated with rectifying transport properties. Scientific Reports 2013, 3.
13. Sawa, A.; Fujii, T.; Kawasaki, M.; Tokura, Y., Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Applied Physics Letters 2004, 85 (18), 4073-4075.
14. Waser, R.; Aono, M., Nanoionics-based Resistive Switching Memories. Nature Materials 2007, 6 (11), 833-840.
15. Yang, J. J.; Strachan, J. P.; Xia, Q.; Ohlberg, D. A.; Kuekes, P. J.; Kelley, R. D.; Stickle, W. F.; Stewart, D. R.; Medeiros-Ribeiro, G.; Williams, R. S., Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv Mater 2010, 22 (36), 4034-8.
16. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials 2009, 21 (25-26), 2632-2663.
17. Miao, F.; Strachan, J. P.; Yang, J. J.; Zhang, M.-X.; Goldfarb, I.; Torrezan, A. C.; Eschbach, P.; Kelley, R. D.; Medeiros-Ribeiro, G.; Williams, R. S., Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor. Advanced Materials 2011, 23 (47), 5633-5640.
18. Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A.; Stewart, D. R.; Williams, R. S., Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 2008, 3 (7), 429-33.
19. Pickett, M. D.; Borghetti, J.; Yang, J. J.; Medeiros-Ribeiro, G.; Williams, R. S., Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv Mater 2011, 23 (15), 1730-3.
20. Kyung Min, K.; Doo Seok, J.; Cheol Seong, H., Nanofilamentary Resistive Switching in Binary Oxide System; a Review on the Rresent Status and Outlook. Nanotechnology 2011, 22, 254002.
21. Kügeler, C.; Meier, M.; Rosezin, R.; Gilles, S.; Waser, R., High density 3D memory architecture based on the resistive switching effect. Solid-State Electronics 2009, 53 (12), 1287-1292.
22. Cui, Y.; Lieber, C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291 (5505), 851-3.
23. Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291 (5504), 630-3.
24. Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M., Logic Gates and Computation from Assembled Nanowire Building Blocks. Science 2001, 294 (5545), 1313-1317.
25. Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M., Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302 (5649), 1377-9.
26. Duan, X.; Huang, Y.; Lieber, C. M., Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires. Nano Letters 2002, 2 (5), 487-490.
27. Dong, Y.; Yu, G.; McAlpine, M. C.; Lu, W.; Lieber, C. M., Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches. Nano Letters 2008, 8 (2), 386-391.
28. Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nat Mater 2007, 6 (11), 841-850.
29. Kim, S. I.; Lee, J. H.; Chang, Y. W.; Hwang, S. S.; Yoo, K.-H., Reversible Resistive Switching Behaviors in NiO Nanowires. Applied Physics Letters 2008, 93 (3), 033503.
30. Oka, K.; Yanagida, T.; Nagashima, K.; Tanaka, H.; Kawai, T., Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires. Journal of the American Chemical Society 2009, 131 (10), 3434-3435.
31. Oka, K.; Yanagida, T.; Nagashima, K.; Kawai, T.; Kim, J.-S.; Park, B. H., Resistive-Switching Memory Effects of NiO Nanowire/Metal Junctions. Journal of the American Chemical Society 2010, 132 (19), 6634-6635.
32. Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P., Bipolar resistive switching in individual Au–NiO–Au segmented nanowires. Applied Physics Letters 2009, 95 (20), 203505.
33. He, L.; Liao, Z. M.; Wu, H. C.; Tian, X. X.; Xu, D. S.; Cross, G. L.; Duesberg, G. S.; Shvets, I. V.; Yu, D. P., Memory and threshold resistance switching in Ni/NiO core-shell nanowires. Nano Lett 2011, 11 (11), 4601-6.
34. Weilie Zhou, Z. L. W., Scanning Microscopy for Nanotechnology. Springer New York: 2007.
35. http://en.wikipedia.org/wiki/Transmission_electron_microscopy.
36. David B. Williams, C. B. C., Transmission Electron Microscopy. 2nd ed.; Springer US: 2009.
37. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope. 3rd ed.; Springer 2011.
38. Sawa, A., Resistive Switching in Transition Metal Oxides. Materials Today 2008, 11 (6), 28-36.
39. Yang, J. J.; Strukov, D. B.; Stewart, D. R., Memristive Devices for Computing. Nat Nano 2013, 8 (1), 13-24.
40. Baek, I. G.; Lee, M. S.; Seo, S.; Lee, M. J.; Seo, D. H.; Suh, D. S.; Park, J. C.; Park, S. O.; Kim, H. S.; Yoo, I. K.; Chung, U. I.; Moon, J. T. In Highly Scalable Nonvolatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 13-15 Dec. 2004; 2004; pp 587-590.
41. Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H. J.; Hwang, C. S.; Szot, K.; Waser, R.; Reichenberg, B.; Tiedke, S., Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition. Journal of Applied Physics 2005, 98 (3), 033715-10.
42. Huang, C.-H.; Huang, J.-S.; Lin, S.-M.; Chang, W.-Y.; He, J.-H.; Chueh, Y.-L., ZnO1–x Nanorod Arrays/ZnO Thin Film Bilayer Structure: From Homojunction Diode and High-Performance Memristor to Complementary 1D1R Application. ACS Nano 2012, 6 (9), 8407-8414.
43. Tzu-Ning, F.; Kaza, S.; Haddad, S.; An, C.; Yi-Ching, W.; Zhida, L.; Avanzino, S.; Dongxiang, L.; Gopalan, C.; Seungmoo, C.; Mahdavi, S.; Buynoski, M.; Lin, Y.; Marrian, C.; Bill, C.; VanBuskirk, M.; Taguchi, M. In Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with Nickel Electrode, Electron Devices Meeting, 2006. IEDM '06. International, 11-13 Dec. 2006; 2006.
44. Qi, J.; Olmedo, M.; Ren, J.; Zhan, N.; Zhao, J.; Zheng, J.-G.; Liu, J., Resistive Switching in Single Epitaxial ZnO Nanoislands. ACS Nano 2012, 6 (2), 1051-1058.
45. Nagashima, K.; Yanagida, T.; Oka, K.; Kanai, M.; Klamchuen, A.; Kim, J.-S.; Park, B. H.; Kawai, T., Intrinsic Mechanisms of Memristive Switching. Nano Letters 2011, 11 (5), 2114-2118.
46. Nagashima, K.; Yanagida, T.; Oka, K.; Kanai, M.; Klamchuen, A.; Rahong, S.; Meng, G.; Horprathum, M.; Xu, B.; Zhuge, F.; He, Y.; Park, B. H.; Kawai, T., Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Letters 2012, 12 (11), 5684-5690.
47. Oka, K.; Yanagida, T.; Nagashima, K.; Kanai, M.; Kawai, T.; Kim, J.-S.; Park, B. H., Spatial Nonuniformity in Resistive-Switching Memory Effects of NiO. Journal of the American Chemical Society 2011, 133 (32), 12482-12485.
48. Ielmini, D.; Cagli, C.; Nardi, F.; Zhang, Y., Nanowire-based Resistive Switching Memories: Devices, Operation and Scaling. Journal of Physics D: Applied Physics 2013, 46 (7), 074006.
49. Hu, J.; Odom, T. W.; Lieber, C. M., Chemistry and Physics in One Dimension:  Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research 1999, 32 (5), 435-445.
50. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389.
51. Barth, J. V.; Costantini, G.; Kern, K., Engineering Atomic and Molecular Nanostructures at Surfaces. Nature 2005, 437 (7059), 671-9.
52. Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J.-S.; Park, B. H., Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire. Nano Letters 2010, 10 (4), 1359-1363.
53. Chiang, Y. D.; Chang, W. Y.; Ho, C. Y.; Chen, C. Y.; Ho, C. H.; Lin, S. J.; Wu, T. B.; He, J. H., Single-ZnO-Nanowire Memory. Ieee Transactions on Electron Devices 2011, 58 (6), 1735-1740.
54. Yang, Y. C.; Zhang, X. X.; Gao, M.; Zeng, F.; Zhou, W. Y.; Xie, S. S.; Pan, F., Nonvolatile Resistive Switching in Single Crystalline ZnO Nanowires. Nanoscale 2011, 3 (4), 1917-1921.
55. Deng, X. L.; Hong, S.; Hwang, I.; Kim, J. S.; Jeon, J. H.; Park, Y. C.; Lee, J.; Kang, S. O.; Kawai, T.; Park, B. H., Confining Grains of Textured Cu2O Films to Single-Crystal Nanowires and Resultant Change in Resistive Switching Characteristics. Nanoscale 2012, 4 (6), 2029-33.
56. Dong, H.; Zhang, X.; Zhao, D.; Niu, Z.; Zeng, Q.; Li, J.; Cai, L.; Wang, Y.; Zhou, W.; Gao, M.; Xie, S., High Performance Bipolar Resistive Switching Memory Devices Based on Zn2SnO4 Nanowires. Nanoscale 2012, 4 (8), 2571-2574.
57. Hsu, C. W.; Chou, L. J., Bipolar Resistive Switching of Single Gold-in-Ga2O3 Nanowire. Nano Lett 2012, 12 (8), 4247-53.
58. Teichert, C., Self-organization of nanostructures in semiconductor heteroepitaxy. Physics Reports 2002, 365 (5–6), 335-432.
59. Lai, C.-c.; Lin, Y.-K.; Yuan, F.-W.; Tuan, H.-Y.; Chueh, Y.-L., High-Density Germanium Nanowire Arrays via Supercritical Fluid-Liquid-Solid Growth in Porous Alumina Templates. Ecs Solid State Letters 2013, 2 (7), P55-P57.
60. Lee, W.; Ji, R.; Gosele, U.; Nielsch, K., Fast Fabrication of Long-range Ordered Porous Alumina Membranes by Hard Anodization. Nat Mater 2006, 5 (9), 741-7.
61. Masuda, H.; Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268 (5216), 1466-1468.
62. Huang, Q.; Lilley, C. M.; Bode, M.; Divan, R., Surface and Size Effects on the Electrical Properties of Cu Nanowires. Journal of Applied Physics 2008, 104 (2), 023709-023709-6.
63. Mu, C.; He, J., Confined Conversion of CuS Nanowires to CuO Nanotubes by Annealing-induced Diffusion in Nanochannels. Nanoscale research letters 2011, 6 (1), 150.
64. Chen, A.; Haddad, S.; Wu, Y. C.; Lan, Z.; Fang, T. N.; Kaza, S., Switching Characteristics of Cu2O Metal-Insulator-Metal Resistive Memory. Applied Physics Letters 2007, 91 (12), 123517.
65. Chen, A.; Haddad, S.; Wu, Y. C.; Fang, T. N.; Kaza, S.; Lan, Z., Erasing Characteristics of Cu2O Metal-Insulator-Metal Resistive Switching Memory. Applied Physics Letters 2008, 92 (1), 013503.
66. Yang, W.-Y.; Kim, W.-G.; Rhee, S.-W., Radio Frequency Sputter Deposition of Single Phase Cuprous Oxide Using Cu2O as a Target Material and its Resistive Switching Properties. Thin Solid Films 2008, 517 (2), 967-971.
67. Lv, H.; Wang, M.; Wan, H.; Song, Y.; Luo, W.; Zhou, P.; Tang, T.; Lin, Y.; Huang, R.; Song, S.; Wu, J. G.; Wu, H. M.; Chi, M. H., Endurance Enhancement of Cu-oxide Based Resistive Switching Memory with Al Top Electrode. Applied Physics Letters 2009, 94 (21), 213502.
68. Kim, C. H.; Jang, Y. H.; Hwang, H. J.; Sun, Z. H.; Moon, H. B.; Cho, J. H., Observation of Bistable Resistance Memory Switching in CuO Thin Films. Applied Physics Letters 2009, 94 (10), 102107.
69. Kang, S.-O.; Hong, S.; Choi, J.; Kim, J.-S.; Hwang, I.; Byun, I.-S.; Yun, K.-S.; Park, B. H., Electrochemical Growth and Resistive Switching of Flat-surfaced and (111)-oriented Cu2O Films. Applied Physics Letters 2009, 95 (9), 092108.
70. Fujiwara, K.; Nemoto, T.; Rozenberg, M. J.; Nakamura, Y.; Takagi, H., Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices. Japanese Journal of Applied Physics 2008, 47 (No. 8), 6266-6271.
71. Lampert, M. A., Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Physical Review 1956, 103 (6), 1648-1656.
72. Yang, J. J.; Inoue, I. H.; Mikolajick, T.; Hwang, C. S., Metal Oxide Memories Based on Thermochemical and Valence Change Mechanisms. Mrs Bull 2012, 37 (02), 131-137.
73. Chang, W.-Y.; Cheng, K.-J.; Tsai, J.-M.; Chen, H.-J.; Chen, F.; Tsai, M.-J.; Wu, T.-B., Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied Physics Letters 2009, 95 (4), -.
74. Yoon, D. H.; Kim, S. J.; Jung, J.; Lim, H. S.; Kim, H. J., Low-voltage Driving Solution-processed Nickel Oxide Based Unipolar Resistive Switching Memory with Ni Nanoparticles. Journal of Materials Chemistry 2012, 22 (34), 17568-17572.
75. Huang, C.-H.; Huang, J.-S.; Lai, C.-C.; Huang, H.-W.; Lin, S.-J.; Chueh, Y.-L., Manipulated Transformation of Filamentary and Homogeneous Resistive Switching on ZnO Thin Film Memristor with Controllable Multistate. ACS Applied Materials & Interfaces 2013, 5 (13), 6017-6023.
76. Johnson, S. L.; Sundararajan, A.; Hunley, D. P.; Strachan, D. R., Memristive switching of single-component metallic nanowires. Nanotechnology 2010, 21 (12).
77. Choi, S.-J.; Moon, D.-I.; Duarte, J. P.; Ahn, J.-H.; Choi, Y.-K., Physical Observation of a Thermo-Morphic Transition in a Silicon Nanowire. Acs Nano 2012, 6 (3), 2378-2384.
78. Horiba, K.; Fujiwara, K.; Nagamura, N.; Toyoda, S.; Kumigashira, H.; Oshima, M.; Takagi, H., Observation of rebirth of metallic paths during resistance switching of metal nanowire. Applied Physics Letters 2013, 103 (19), 193114.
79. Ielmini, D., Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth. Ieee Transactions on Electron Devices 2011, 58 (12), 4309-4317.
80. Ielmini, D.; Nardi, F.; Cagli, C., Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM. Ieee Transactions on Electron Devices 2011, 58 (10), 3246-3253.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *