帳號:guest(3.138.102.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖昱翔
作者(外文):Liao, Yu-Hsiang
論文名稱(中文):氮化釩與奈米碳管複合物作為免黏著劑之超級電容電極
論文名稱(外文):Coating of vanadium nitride onto carbon nanotubes: A binder-free supercapacitor electrodes
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuan
口試委員(中文):呂昇益
許景棟
口試委員(外文):Lu, Sheng-Yi
Hsu, Ching-Tung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031547
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:超級電容奈米碳管氮化釩比電容循環伏安電化學阻抗
外文關鍵詞:supercapacitorcarbon nanotubevanadium nitridespecific capacitancecyclic voltammetryelectrochemical impedance spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:390
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
電極是決定超級電容表現的關鍵,而現今的研究主要集中在過渡金屬氧化物/氮化物或導電高分子這類能產生擬電容的材料上。其中,氮化釩擁有高電容值、化學穩定和良好的導電性。但是氮化釩粉末必須與有機黏著劑結合才能製成電極,而黏著劑的使用將會降低導電度和離子滲入能力,造成高掃描速率下的比電容值降低。為了克服此問題,奈米碳管被引進電極結構中,形成鎳網/碳管/氮化釩多層結構,避免了黏著劑的使用。另外,以不含碳管的電極(鎳網/氮化釩)作為對照組,研究碳管對電容的影響。電極的結構和形貌由X光繞射儀、拉曼光譜儀、X光光電子能譜儀、場發射掃描電子顯微鏡、和BET比表面積測試得到資訊。電極在水和有機電解液中的電化學性質,包含比電容、倍率效能、循環壽命,由循環伏安法與電化學阻抗分析得到。本研究顯示,碳管提供多孔性結構利於電子和電解液離子傳輸,且增加了氮化釩的利用率,使得比電容值得到提昇。
Electrodes play a crucial role in determining the performance of supercapacitors and current study mainly focused on transition metal oxides/nitrides and conducting polymers that show a large pseudo-capacitance in repeated charging-discharging profiles. Among these materials, the vanadium nitride (VN) possesses a high capacitance and chemical stability and is metallic in nature. VN, however, is often made in powder form and must combine with organic binders to form an electrode. In this case, conductivity and ionic accessibility, due to existing binders, are reduced and capacitance also decreases at high scan rates. To overcome these problems, carbon nanotubes (CNTs) are introduced to create the hierarchical electrode structure (Ni/CNTs/VN), avoiding the use of binder. CNTs–free electrodes (Ni/VN) served as control group are also measured for a comparison on capacitance. The structural properties and morphologies of electrodes are characterized by X-ray diffraction (XRD), Electron Spectroscopy for Chemical Analysis (ESCA), Raman measurement, field emission scanning electron microscopy (FE-SEM), and BET surface area measurement. The electrochemical properties, including capacitance, rate capability, and cycle life, are studied by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in aqueous and organic electrolyte, respectively. This work suggests that CNTs provide an open mesoporous texture for access of electrolyte ions and electrons, and increases utility of VN, thus enhancing the capacitive performance.
1. 文獻回顧 1
1-1 超級電容器之簡介 1
1-1-1 超級電容器簡介 1
1-1-2 超級電容之能量儲存機制 2
1-1-3 超級電容之表現參數 3
1-1-4 超級電容常用之測量方法 6
1-1-5 電化學阻抗分析方法 7
1-2超級電容的電極材料 10
1-2-1過渡金屬氧化物 10
1-2-2導電高分子 11
1-2-3氮化釩 12
1-2-4 免黏著劑的氮化釩電極 13
1-3奈米碳管之簡介 14
1-3-1奈米碳管之簡介 14
1-3-2 奈米碳管之導電性質 17
2. 研究動機 20
3. 實驗部份 21
3-1 實驗流程圖 22
3-2 藥品與儀器 23
3-3 實驗步驟 24
3-3-1 酸化奈米碳管 24
3-3-2 碳管之電泳沈積 25
3-3-3溶液溶膠法鍍上五氧化二釩乾凝膠 27
3-3-4 高溫氨氣下之氮化反應 30
3-4 分析 32
3-4-1 材料鑑定 32
3-4-2 電化學性質鑑定 33
4. 結果與討論 34
4-1 材料鑑定 34
4-1-1 X光繞射分析(XRD) 34
4-1-2 X光光電子能譜(ESCA) 38
4-1-3拉曼光譜分析(Raman) 46
4-1-4場發射掃描式電子顯微鏡(FE-SEM) 50
4-1-5 比表面積測試(BET) 62
4-2 電化學性質鑑定 64
4-2-1 比電容測試 65
4-2-2 電化學阻抗測試 74
4-2-3 倍率性能測試 80
4-2-4 循環壽命測試 82
5. 結論 87
參考文獻 88
---[1] X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, Nanoscale, 3 (2011) 839-855.
[2] G. Wang, L. Zhang, J. Zhang, Chemical Society Reviews, 41 (2012) 797-828.
[3] R. Kötz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
[4] W. Plieth, Electrochemistry for Material Science, Elsevier2007.
[5] J.E.B. Randles, Discussions of the Faraday Society, 1 (1947) 11-19.
[6] J.R. MacDonald, Impedance Spectroscopy, Wiley, New York, 1987.
[7] W. Deng, X. Ji, Q. Chen, C.E. Banks, RSC Advances, 1 (2011) 1171-1178.
[8] D. Choi, G.E. Blomgren, P.N. Kumta, Advanced Materials, 18 (2006) 1178-+.
[9] X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Journal of Physics and Chemistry of Solids, 70 (2009) 495-500.
[10] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo, J. Zhou, Advanced Materials, 25 (2013) 4954-4954.
[11] L. Zhang, C.M.B. Holt, E.J. Luber, B.C. Olsen, H.T. Wang, M. Danaie, X.W. Cui, X.H. Tan, V.W. Lui, W.P. Kalisvaart, D. Mitlin, J Phys Chem C, 115 (2011) 24381-24393.
[12] X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, Nano Letters, 13 (2013) 2628-2633.
[13] S. Iijima, Nature, 354 (1991) 56-58.
[14] M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Physical Review Letters, 84 (2000) 5552-5555.
[15] W.A. de Heer, MRS Bulletin, 29 (2004) 281-285.
[16] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Appl Phys A, 74 (2002) 339-343.
[17] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Science, 273 (1996) 483-487.
[18] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chemical Physics Letters, 313 (1999) 91-97.
[19] V.N. Popov, Materials Science & Engineering R-Reports, 43 (2004) 61-102.
[20] C.W. Tan, K.H. Tan, Y.T. Ong, A.R. Mohamed, S.H.S. Zein, S.H. Tan, Environmental Chemistry Letters, 10 (2012) 265-273.
[21] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett, 60 (1992) 2204-2206.
[22] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando, Physical Review Letters, 92 (2004) 125502.
[23] E.F. Kukovitsky, S.G. L'Vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, Chemical Physics Letters, 355 (2002) 497-503.
[24] Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.-C. Chung, Journal of Applied Physics, 88 (2000) 4898-4903.
[25] J.C. Charlier, J.P. Michenaud, Physical Review Letters, 70 (1993) 1858-1861.
[26] C.T. White, J.W. Mintmire, The Journal of Physical Chemistry B, 109 (2004) 52-65.
[27] T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Nature, 391 (1998) 62-64.
[28] L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Physical Review Letters, 76 (1996) 971-974.
[29] H. Dai, Surface Science, 500 (2002) 218-241.
[30] R. Saito, G.D. G Dresselhaus, M S, Physical Properties Of Carbon Nanotubes, Imperial College Press1998.
[31] C.M. UtilizationGhimbeu, E. Raymundo-Pinero, P. Fioux, F. Beguin, C. Vix-Guterl, J. Mater. Chem., 21 (2011) 13268-13275.
[32] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Carbon, 34 (1996) 279-281.
[33] R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, J. Power Sources, 84 (1999) 126-129.
[34] A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E. Jane Minay, M.S.P. Shaffer, Carbon, 44 (2006) 3149-3160.
[35] O.O. Van der Biest, L.J. Vandeperre, Annual Review of Materials Science, 29 (1999) 327-352.
[36] J. Cho, K. Konopka, K. Rożniatowski, E. García-Lecina, M.S.P. Shaffer, A.R. Boccaccini, Carbon, 47 (2009) 58-67.
[37] B. Alonso, J. Livage, Journal of Solid State Chemistry, 148 (1999) 16-19.
[38] H. Kwon, S. Choi, L.T. Thompson, Journal of Catalysis, 184 (1999) 236-246.
[39] R. Kapoor, S.T. Oyama, Journal of Solid State Chemistry, 99 (1992) 303-312.
[40] G.T. Chandrappa, N. Steunou, S. Cassaignon, C. Bauvais, J. Livage, Catalysis Today, 78 (2003) 85-89.
[41] J.-J. Legendre, P. Aldebert, N. Baffier, J. Livage, Journal of Colloid and Interface Science, 94 (1983) 84-89.
[42] PDF#35-0768.
[43] PDF#23-0720.
[44] PDF#18-1449.
[45] M. Li, M. Boggs, T.P. Beebe, C.P. Huang, Carbon, 46 (2008) 466-475.
[46] K. Wepasnick, B. Smith, J. Bitter, D. Howard Fairbrother, Anal Bioanal Chem, 396 (2010) 1003-1014.
[47] R. Arrigo, M. Havecker, R. Schlogl, D.S. Su, Chemical Communications, (2008) 4891-4893.
[48] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Chemistry of Materials, 22 (2010) 914-921.
[49] B. Zhou, D. He, Journal of Raman Spectroscopy, 39 (2008) 1475-1481.
[50] F.-K. Tung, M. Yoshimura, K. Ueda, Journal of Nanomaterials, 2009 (2009).
[51] J. Robertson, Journal of Non-Crystalline Solids, 198–200, Part 2 (1996) 615-618.
[52] R.L. Madan, S.Chand S.G.Physical Chemistry, S.Chand and Company Ltd 2005.
[53] S. Brunauer, P.H. Emmett, E. Teller, Journal of the American Chemical Society, 60 (1938) 309-319.
[54] A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon, 39 (2001) 507-514.
[55]
[56] K. Zhang, H. Wang, X. He, Z. Liu, L. Wang, L. Gu, H. Xu, P. Han, S. Dong, C. Zhang, J. Yao, G. Cui, L. Chen, J. Mater. Chem., 21 (2011) 11916-11922.
[57] A.M. Engstrom, F.M. Doyle, J. Power Sources, 228 (2013) 120-131.
[58] K.K. Prashanth H. Jampania, , Dae Ho Hongb, Rigved Epurc, James A. Postond, Ayyakkannu Manivannand, and Prashant N. Kumtaa, J. Electrochem. Soc., 160 (2013) A1118.
[59] Radim Hrdy1, Hana Kynclova1, Jana Drbohlavova, Vojtech Svatos, J. Chomoucka, J.P. , P.B. , J. Pekarek, L. Trnkova, R. Kizek, J.H. , 2, International Journal of ELECTROCHEMICAL SCIENCE, 8 (2013) 4384-4396.
[60] M.M. Rahman, J.Z. Wang, N.H. Idris, Z.X. Chen, H.K. Liu, Electrochimica Acta, 56 (2010) 693-699.
[61] S.D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J.P. Ferraris, Y.J. Chabal, K.J. Balkus, Jr., Advanced Energy Materials, 1 (2011) 936-945.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *