帳號:guest(18.224.66.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭力綸
作者(外文):Kuo, Li-Lun
論文名稱(中文):銅錫錳氧化物之製作及於太陽能應用
論文名稱(外文):Cu-Sn-Mn Oxide for Solar Energy Applications
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
口試委員(中文):林鶴南
李紫原
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031544
出版年(民國):103
畢業學年度:103
語文別:中文英文
論文頁數:122
中文關鍵詞:氧化物太陽能
外文關鍵詞:CopperTinManganeseOxideSolar energy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:432
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用電子槍蒸鍍製程,並配合後退火與氧化程序,成長 Cu-Sn-Mn-O多元氧化物薄膜,並以此應用於光電化學電池與降解有機物之領域。
本研究選用CuO、SnO2、MnO2等地球含量豐富的氧化物,透過不同成份比例之調配,由UV-Vis之量測結果,得到在光波長為400 nm至 700 nm之吸收係數高於104 cm-1的薄膜,接著進行PL、CL、UPS分析,得知薄膜能隙約在2.3 eV,而價帶、導帶之能階位置約在6.7 eV及4.4 eV。本研究透過霍爾效應量測,得知經後退火與氧化程序之薄膜的載子濃度,可被降低到1019 至1021cm-3。透過GIXRD之晶體結構分析得知,此多元氧化物薄膜屬於混和物,存在CuO、Cu2O、SnO2、MnO、Mn3O4等晶相,並以SEM觀察得知薄膜表面形貌粗糙。
本研究將靶材成份為CuO : SnO2 : MnO2 = 3 : 1 : 3,經電子束蒸鍍並以後退火與氧化程序優化過之薄膜,並經製程條件最佳化後,進行LSV (Linear sweep voltammetry)、J-t圖(光電流-時間曲線)之特性測量後,得知薄膜在可見光照射下可得0.042 mA/cm2電流密度,而在太陽光照射下,可提供近0.1 mA/cm2電流密度,但會產生衰減現象;此外,在紫外光區的降解RhB (Rhodamine B) 有機物之速率常數為1.72 x 10-3 min-1,可見光區的降解RhB有機物之速率常數為6.9 x 10-4 min-1,而可見光區的降解MO (Methyl orange) 有機物之速率常數為2.3 x 10-3 min-1;由結果可知,Cu-Sn-Mn-O薄膜在以太陽光分解水方面之應用具有潛力。
In this work, the Cu-Sn-Mn multicomponent oxide thin film deposited from earth-abundant, stable, eco-friendly compound, CuO, SnO2, MnO2, were presented. The applications as an electrode for photoelectrochemical cell and as a material for degradation pollutant were also demonstrated.
The synthesis and characterization of Cu-Sn-Mn-O thin film were investigated in this study. By controlling the composition of target, Cu-Sn-Mn-O thin films showed more than 104 cm-1 absorption coefficient in wavelength of 400 nm to 700 nm, in visible light region by UV-Vis analysis.
The thin films were further investigated by ultraviolet photoelectron spectroscopy (UPS) , photoluminescence (PL) , cathodoluminescene (CL). The Ev (valence band energy), Ec (conduction band energy) band position of thin films, deposited from target composition of Cu : Sn : Mn = 3 : 1 : 3, was characterized as 6.7 eV, 4.4 eV, respectively, and the Eg (band gap) was measured to be 2.3 eV. Carrier concentrations of Cu-Sn-Mn-O thin films could be reduced between 1019 to 1021 cm-3 after annealing and oxidation process. By grazing incident X-ray diffractometer (GIXRD) analyses, Cu-Sn-Mn-O thin film verified as a composite containing CuO, Cu2O, SnO2, MnO, and Mn3O4.
The solar energy applications were investigated by JSV (linear sweep voltammetry), J-t (photocurrent-time curve), and photodegradation experimental tests. The best result showed a current density of 0.042 mA/cm2 under visible light excitation with good stability, and near 0.1 mA/cm2 under solar light excitation but lack of good stability. The rate constant of RhB degradation was 1.72 x 10-3 min-1 under 365 nm UV-light excitation, and 6.9 x 10-4 min-1 under visible light excitation. The rate constant of MO degradation was 2.3 x 10-3 min-1 under visible light excitation. The Cu-Sn-Mn-O thin films developed in this work showed the potential of water splitting under solar light.
目錄
摘要 I
ABSTRACT III
誌謝 V
圖目錄 XV
表目錄 XXII
第一章 緒論 1
第二章 文獻回顧及原理簡介 3
2.1半導體材料性質 3
2.2光觸媒簡介 5
2.2.1光觸媒催化機制 5
2.2.2光觸媒材料特性 7
2.2.3 光電化學電池原理與架構 12
2.2.4現今光觸媒材料表現 15
第三章 實驗流程與儀器簡介 18
3.1 實驗步驟 18
3.1.1 銅錫錳氧化物靶材之製備 21
3.1.2 銅錫錳氧化物薄膜之製備 24
3.1.3 銅錫錳氧化物光電化學電極之製備及電池架構 30
3.1.4 銅錫錳氧化物有機物降解實驗之架構 31
3.2 實驗儀器簡介 35
3.2.1 熱重/熱差分析儀 (TG/DTA) 35
3.2.2 熱機械分析儀 (TMA) 37
3.2.3 紫外光/可見光分光光譜儀 (UV-VIS) 38
3.2.4光激發螢光放光儀 (PL) 及陰極激發螢光放光儀 (CL) 41
3.2.5 紫外光光電子能譜儀 (UPS) 44
3.2.6 霍爾效應量測儀 (HALL EFFECT MEASUREMENT) 47
3.2.7 感應耦合電漿質譜儀 (ICP-MS) 49
3.2.8 薄膜厚度輪廓量測儀 (ALPHA STEP) 51
3.2.9 低掠角X光繞射分析儀 (GIXRD) 52
3.2.10 X光繞射分析儀 (XRD) 54
3.2.11 場發射掃描電子顯微鏡 (SEM) 55
第四章 實驗結果與討論 57
4.1 固態程序製備銅錫錳氧化物靶 59
4.1.1 銅錫錳氧化物靶熱重分析 59
4.1.2 銅錫錳氧化物靶熱機械及結構分析 63
4.2 電子槍蒸鍍法製備銅錫錳氧化物薄膜 67
4.2.1銅錫錳氧化物靶成份比例之影響 67
4.2.1.1不同靶材成份之薄膜光譜分析 67
4.2.1.2不同靶材成份之薄膜電性 71
4.2.1.3 不同靶材成份之薄膜結晶性 72
4.3 後退火與氧化程序對銅錫錳氧化物薄膜之影響 74
4.3.1 後退火溫度對薄膜電性之影響 75
4.3.2 真空腔體中各環境氣氛與加熱持溫時間對薄膜電性之影響 78
4.3.3 爐管真空環境中不同氧分壓對薄膜電性之影響 82
4.3.4爐管中進行不同氧分壓對薄膜光學特性之影響 85
4.3.5 於爐管中進行不同氧分壓後退火與氧化程序之薄膜成份分析 97
4.4 銅錫錳氧化物光觸媒光電流表現 98
4.5 銅錫錳氧化物光觸媒有機物降解表現 101
第五章 結論 111
第六章 未來展望 113
參考文獻 114
本研究產出之論文發表 119
本研究將發表之期刊論文 119
1. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. PNAS, 2006. 103(43): p. 15729-15735.
2. Neamen, D.A., An Introduction to Semiconductor Devices. 2005: McGraw-Hill Science/Engineering/Math.
3. Fujishima, A., T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochemistry Reviews 2000. 1: p. 1-21.
4. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414.
5. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009. 38: p. 253-278.
6. Kudo, A., Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
7. Bird, R.E., R.L. Hulstrom, and L.J. Lewis, Terrestrial solar spectral data sets. Solar Energy, 1983. 30(6): p. 563-573.
8. Hashimoto, K., H. Irie, and A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 2005. 44(12): p. 8269-8285.
9. Murphy, A.B., et al., Efficiency of solarwater splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006. 31: p. 1999-2017.
10. Bolton, J.R. and D.O. Hall, Photochemical conversion and storage of solar energy. Ann. Rev. Energy, 1979. 4: p. 353-401.
11. Krol, R.V.D., Y. Liang, and J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem., 2008. 18: p. 2311-2320.
12. Bolton, J.R., S.J. Strickler, and J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985. 316(8): p. 495-500.
13. Kanan, D.K. and E.A. Carter, Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst. J. Phys. Chem. C, 2012. 116: p. 9876-9887.
14. Yan, H., et al., Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Prog. Nat. Sci., 2013. 23(4): p. 402-407.
15. Torimoto, T., I. Robert J. Fox, and M.A. Fox, Photoelectrochemical doping of TiO2 particles and the effect of charge carrier density on the photocatalytic activity of microporous semiconductor electrode films. J. Electrochem. Soc., 1996. 143(11): p. p.3712-3716.
16. Zhao, W.-N. and Z.-P. Liu, Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem. Sci, 2014. 5: p. 2256-2264.
17. Brinkley, D. and T. Engel, Active site density and reactivity for the photocatalytic dehydrogenation of 2-propanol on TiO2 (110). Surf. Sci., 1998. 415: p. L1001-L1006.
18. Zhang, M., et al., Enhancement of Visible-Light-Induced Photocurrent and Photocatalytic Activity of V and N Codoped TiO2 Nanotube Array Films. J. Electrochem. Soc. , 2014. 161(6): p. H416-H421.
19. Kumar, J. and A. Bansal, Dual Effect of Photocatalysis and Adsorption in Degradation of Azorubine Dye Using Nanosized TiO2 and Activated Carbon Immobilized with Different Techniques. Int.J. ChemTech Res., 2010. 2(3): p. 1537-1543.
20. Linsebigler, A.L., et al., Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev., 1995. 95(3): p. 735-758.
21. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238: p. 37-38.
22. Paracchino, A., et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater., 2011. 10: p. 456-461.
23. Lewerenz, H.-J. and L. Peter, Photoelectrochemical water splitting: materials, processes and architectures. 2013: Royal Society of Chemistry.
24. Fujishima, A., K. Honda, and S. Kikuchi, Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi, 1969. 72: p. 108-113.
25. Borgarello, E., et al., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc., 1982. 104(11): p. 2996-3002.
26. Yamashita, H., et al., Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J. Synchrotron Rad., 1999. 6: p. 451-452.
27. Irie, H., Y. Watanabe, and K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B, 2003. 107(23): p. 5483-5486.
28. Yan, G., et al., Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation. Mater. Chem. Phys., 2011. 129: p. 553-557.
29. Guo, M.Y., et al., Effect of native defects on photocatalytic properties of ZnO. J. Phys. Chem. C, 2011. 115: p. 11095-11101.
30. Reunchan, P., et al., Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production. J. Mater. Chem. A, 2013. 1: p. 4221-4227.
31. Zhang, Y., et al., Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chem. Sci., 2012. 3: p. 2812-2822.
32. Wang, F., C.D. Valentin, and G. Pacchioni, Rational band gap engineering of WO3 photocatalyst for visible light water splitting. ChemCatChem, 2012. 4: p. 476-478.
33. Townsend, T.K., et al., Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling. Energy Environ. Sci., 2011. 4: p. 4270-4275.
34. Wang, Y., et al., Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3H4. Energy Environ. Sci., 2011. 4: p. 2922-2929.
35. Zhuang, J., et al., Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir, 2010. 26(12): p. 9686-9694.
36. Jia, T., et al., Synthesis, characterization, and photocatalytic activity of Zn-doped SnO2 hierarchical architectures assembled by nanocones. J. Phys. Chem. C, 2009. 113: p. 9071-9077.
37. Wu, J.-M., et al., Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: on the interplay between crystallinity and mesostructure. Beilstein J. Nanotechnol., 2012. 3: p. 123-133.
38. Li, G., et al., Origin of difference in photocatalytic activity of ZnO (002) grown on a- and c-face sapphire. Int. J. photoenergy, 2014.
39. Variation in photocatalytic activity of SrTiO3 (100) single-crystal thin films with different substrates and annealing atmosphere. Sci. Adv. Mater. 5(7): p. 764-768.
40. Mahadik, M.A., et al., Photocatalytic oxidation of Rhodamine B with ferric oxide thin films under solar illumination. Mater. Rer. Bull., 2013. 48: p. 4058-4065.
41. Arabatzis, I.M., et al., Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal., B: Environmental 2003. 42: p. 187-201.
42. Meng, F., et al., Photocatalytic degradation of methyl orange by nano-TiO2 thin films prepared by RF magnetron sputtering. Chin. Opt. Lett., 2009. 7(10): p. 956-959.
43. Scuderi, V., et al., TiO2-coated nanostructures for dye photo-degradation in water. Nanoscale Res. Lett., 2014. 9(458): p. 1-7.
44. Channei, D., et al., Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci. Rep., 2014. 4(5757): p. 1-7.
45. Qiu, H., et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun., 2013. 4(2642): p. 1-6.
46. Waldomiro Paschoal, J., et al., Hopping conduction in Mn ion-implanted GaAs nanowires. Nano Lett. , 2012. 12: p. 4838-4842.
47. Jean, J.-H. and S.-C. Lin, Low-Fire Processing of ZrO2–SnO2–TiO2 Ceramics. Journal of the American Ceramic Society, 2000. 83(6): p. 1417-1422.
48. Tauc, J., States in the gap. J. non-cryst. solids, 1972. 569: p. 8-10.
49. Mott, N.F. and E.A. Davis, electronic processes in non-crysalline materials. 1979: clarendon press‧oxford.
50. Schroder, D.K., semiconductor material and device characterization. 2006: Wiley-IEEE Press.
51. Chun, W.-J., et al., Conduction band and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods J. Phys. Chem. B, 2003. 107: p. 1798-1803.
52. Karlsruhe, F. Inorganic crystal structure database (ICSD). [cited 2014; Available from: http://www.fiz-karlsruhe.de/icsd.html.
53. Jundale, D., et al., Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization. J. Sens. Technol., 2011. 1(2).
54. Mukhamedshina, D.M. and N.B. Beisenkhanov, Influence of crystallization on the properties of SnO2 thin films, in Advances in crystallization processes. p. 221.
55. Kumar, R., A. Khanna, and V.S. Sastry, Interaction of reducing gases with tin oxide films prepared by reactive evaporation techniques. Vacuum, 2012. 86: p. 1380-1386.
56. Cheruku, D.R. and B.T. Krishna, Electronic devices and circuit. 2008: Pearson Education India. 27.
57. Cho, S. and K. Lee, Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. J. Appl. Phys., 2006. 100: p. 114503.
58. Warzecha, M., et al., High mobility annealing of transparent conductive oxides, in IOP conf. series: materials science and engineering. 2012. p. 0122004.
59. Cui, H.-N., et al., Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature. Vacuum, 2008. 82: p. 1507-1511.
60. Li, F.B. and X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal., A, 2002. 228: p. p.15-27.
61. Li, X.Z., et al., Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobiol., A, 2001. 141: p. p.209-217.
62. Khan, M.M., et al., Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A, 2014. 2.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *