帳號:guest(3.145.12.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳昱賢
論文名稱(中文):透明可撓式二氧化鈦與氮摻雜二氧化鈦摻雜石墨烯場效電晶體之研究
論文名稱(外文):Investigation on the TiO2 and N-doped TiO2 -doped Graphene for Synthesizing Flexible Transparent Field Effect Transistor
指導教授(中文):戴念華
口試委員(中文):戴念華
李紫原
邱博文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031536
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:117
中文關鍵詞:石墨烯透明可撓電晶體二氧化鈦光感測
相關次數:
  • 推薦推薦:0
  • 點閱點閱:382
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
石墨烯(Graphene)為一單層碳原子材料,具有特殊的光學與電學性質、優良的化學穩定性以及高載子遷移率,這些獨特的性質,使石墨烯具備取代矽材料作為電子元件的潛力。此外,如藉由不同物質之摻雜,遂可改變石墨烯的傳導特性,而可製作出P型或N型場效電晶體。故本研究以熱化學氣相沉積系統於電解拋光銅箔上成長大面積的單層石墨烯,並轉印至可撓高分子聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)基板上,以製作可撓性透明場效電晶體;並利用二氧化鈦與氮摻雜二氧化鈦奈米顆粒對石墨烯進行摻雜,以改變石墨烯的電性與提高石墨烯的載子遷移率,並使其具有紫外光與可見光的感光特性。研究中使用拉曼光譜儀、光學顯微鏡、場發射電子顯微鏡探討實驗參數對石墨烯成長及轉印結果的影響,並以紫外光-可見光光譜儀分析石墨烯的吸光率,及原子力顯微鏡量測單層石墨烯的厚度。另一方面,利用X光繞射儀與光致發光光譜儀鑑定二氧化鈦與氮摻雜二氧化鈦奈米顆粒的基本物性,並以化學分析電子能譜儀分析氮摻雜二氧化鈦之化學鍵結與元素含量。在場效電晶體量測上,以多探針量測系統量測元件之電學性質,並探討紫外光與可見光光源照射及彎曲條件對電性之影響。
研究結果顯示,於電解拋光銅箔上成長之單層石墨烯,其厚度、吸光率與載子遷移率分別為0.4-0.7 nm、2.39%與1900 cm2/V∙s。經二氧化鈦與氮摻雜二氧化鈦(氮含量:1.4 at.%)摻雜後,其呈現出N型摻雜的效果,且分別使石墨烯載子遷移率提升至53000 cm2/V∙s與31000 cm2/V∙s。進一步透過紫外光與可見光照射可發現,由於二氧化鈦與氮摻雜二氧化鈦內電子-電洞對之產生,激發電子可傳遞至石墨烯通道中,而呈現N型傳導特性;於照射後,電性可於5分鐘內回復至初使狀態,故證實摻雜後此電晶體元件亦兼具紫外光與可見光之感測性。在撓曲測試上,其結果顯示當曲率半徑大於2.0 cm時,載子遷移率無明顯變化。
Graphene, a monolayered carbon material with hexagonal structure, has attracted intensive attention due to its unique optoelectrical properties, excellent chemical stability and high carrier mobility, which shows potential for replacing silicon in semiconductor industry. In addition, by doping various species one could tailor the transfer properties of graphene and construct P-type or N-type field-effect-transistor devices. In this study, large-area and single-layer graphene was grown on the electropolished Cu foil by the thermal chemical vapor deposition method and transferred on a polyethylene terephthalate substrate to fabricate flexible transparent field-effect-transistors. TiO2 and N-doped TiO2 nanoparticles were doped on the graphene to alter the electric properties of graphene, enhance the carrier mobility of graphene and make transistors possess optical sensing of UV and visible light. Graphene growth and transferring were characterized by Raman spectroscopy, field-emission scanning electron microscopy, and optical microscopy; the absorbance and thickness of graphene were measured using UV-Vis spectrophotometer and atomic force microscopy, respectively. On the oher hand, the physical properties of TiO2 and N-doped TiO2 nanoparticles were identified by X-ray diffractometer and photoluminescence spectroscopy, and the chemical bonding and element content of N-doped TiO2 nanoparticles were investigated by ESCA. Electrical properties of the fabricated FETs were examined by a multi-probe system and the influences of irradiation of UV and visible light and bending test on electrical propeties were also analyzed.
The results indicate that the thickness, absorbance, and carrier mobility of the graphene were 0.4-0.7 nm, 2.39%, and 1900 cm2/V∙s, respectively. Doping of TiO2-doped and N-doped TiO2 (N: 1.4 at.%) leads to a N-type doping effect and the carrier mobility of graphene were improved to 53000 cm2/V∙s and 31000 cm2/V∙s, respectively. By UV and visible light irradiation, TiO2 and N-doped TiO2 generated electrons and holes, and the generated electrons transferred to graphene channels, which caused FETs to show N-type electric behavior. Moreover, the electric properties of graphene returned back to their initial state within 5 min, confirming that the graphene FETs showed photosensitive to UV and visible light. Under the bending of the curvature radius higher than 2.0 cm, the carrier mobility of the FETs were not substantially changed.
目錄
摘要.............................................................................................................I
Abstract.....................................................................................................III
致謝..........................................................................................................V
目錄.........................................................................................................VII
圖目錄......................................................................................................XI
表目錄..................................................................................................XIX
第一章 緒論..............................................................................................1
1-1前言..............................................................................................1
1-2研究動機......................................................................................2
第二章 文獻回顧......................................................................................4
2-1石墨烯簡介..................................................................................4
2-1-1石墨烯的晶體結構...........................................................4
2-1-2石墨烯的能帶結構...........................................................5
2-2石墨烯的製備方法......................................................................7
2-2-1機械剝離法.......................................................................7
2-2-2碳化矽裂解法...................................................................7
2-2-3化學還原法.......................................................................8
2-2-4化學氣相沉積法...............................................................9
2-3銅箔電解拋光............................................................................11
2-3-1電解拋光簡介.................................................................11
2-3-2以拋光銅箔成長石墨烯.................................................13
2-4石墨烯之摻雜............................................................................14
2-4-1電性摻雜.....................................................................14
2-4-2化性摻雜.....................................................................16
2-4-3氧化物摻雜…................................................................17
2-5鑑定石墨烯層數之方法............................................................20
2-5-1穿透式電子顯微鏡.........................................................20
2-5-2原子力顯微鏡.................................................................20
2-5-3光學顯微鏡.....................................................................21
2-5-4拉曼光譜儀.....................................................................21
2-6二氧化鈦簡介............................................................................23
第三章 實驗步驟與研究方法................................................................46
3-1實驗步驟....................................................................................46
3-1-1銅箔前處理.....................................................................46
3-1-2電解拋光銅箔.................................................................46
3-1-3石墨烯的製備.................................................................47
3-1-4轉印製程.........................................................................47
3-1-5石墨烯元件的製備.........................................................48
3-1-6二氧化鈦奈米溶膠的製備.............................................49
3-1-7氮摻雜二氧化鈦奈米顆粒的製備………………….....49
3-1-8二氧化鈦與氮摻雜二氧化鈦摻雜石墨烯之電晶體元件 製備................................................................................49
3-1-9紫外光與可見光照射實驗...........................................50
3-2試片分析............................................................................51
3-2-1拉曼光譜儀.....................................................................51
3-2-2場發射掃描式電子顯微鏡.............................................51
3-2-3原子力顯微鏡.................................................................52
3-2-4紫外光-可見光光譜儀....................................................52
3-2-5 X光繞射儀.....................................................................52
3-2-6光致發光光譜儀.............................................................52
3-2-7化學分析電子能譜儀.....................................................53
3-2-8電壓與電流量測分析.....................................................53
第四章 結果與討論................................................................................59
4-1於銅箔上成長單層石墨烯及其性質分析................................59
4-1-1銅箔前處理-醋酸的作用................................................59
4-1-2單層石墨烯之性質分析.................................................60
4-2於電解拋光銅箔上成長單層石墨烯及其性質分析................62
4-2-1電解拋光處理對銅箔表面形貌的影響.........................63
4-2-2電解拋光銅箔對石墨烯性質之影響.............................64
4-3 二氧化鈦與氮摻雜二氧化鈦摻雜石墨烯及其性質分析....65
4-3-1以二氧化鈦摻雜石墨烯.................................................66
4-3-2以氮摻雜二氧化鈦摻雜石墨烯.....................................67
4-4透明可撓式石墨烯場效電晶體之電性量測............................70
4-4-1原始石墨烯元件之電性.................................................71
4-4-2二氧化鈦摻雜石墨烯元件之電性.................................72
4-4-3氮摻雜二氧化鈦摻雜石墨烯元件之電性.....................75
4-4-4彎曲測試 .......................................................................78
第五章 結論..........................................................................................107
參考文獻................................................................................................109


圖目錄
圖2-1 碳材料的同素異形體,由左至右分別為:三維的鑽石、二維的石墨烯、一維的奈米碳管及零維的富勒烯....................26
圖2-2 石墨烯之(a)蜂巢狀結構(a1和a2為單位晶格向量,δi , i = 1, 2, 3為最鄰近的向量)及(b)第一布里淵區(First Brillouin zone),K和K'為狄拉克點(Dirac point)..........................................................26
圖2-3 石墨烯之(a)三維能帶結構圖及(b)其沿對稱點ΓΜΚ之二維能帶結構圖......................................................................................26
圖2-4 石墨烯之電阻(ρ)-閘極電壓(Vg)雙極場效曲線圖.....................27
圖2-5 利用機械剝離法所製備的石墨烯:(a)厚度為3 nm的石墨烯薄片於SiO2基板之OM圖;(b)為圖(a)石墨烯薄片邊緣的AFM圖,左側深棕色為SiO2基板;右側橘色為石墨烯薄片,掃描範圍為2 μm × 2 μm;(c)單層石墨烯的AFM圖,中央區域厚度為0.8 nm,左下重疊區域厚度為1.2 nm,左上厚度重疊區塊為2.5 nm;(d)石墨烯元件的SEM圖;(e)石墨烯元件的示意圖..................................................................................................27
圖2-6 於碳化矽(0001)基板上成長出的石墨烯STM圖......................28
圖2-7 (a)化學還原法製備石墨烯流程圖:(1)氧化處理石墨、(2)將氧化石墨溶於水中並分散、(3)還原氧化石墨;(b)熱還原法製備石墨烯之流程圖:石墨經氧化處理形成氧化石墨烯,再以瞬間高溫還原剝離..............................................................................29
圖2-8 以鎳箔為基板製備石墨烯之(a)表面析出成長示意圖及(b)不同降溫速率下的拉曼光譜圖..........................................................30
圖2-9 以銅箔為基板成長石墨烯之(a)(b)SEM圖,(b)中的小圖為單層與雙層石墨烯之TEM圖,以及將石墨烯轉印至(c)SiO2/Si基板與(d)玻璃基板.............................................................................31
圖2-10 以銅箔為基板成長石墨烯並轉印至SiO2/Si基板之(a) SEM圖、(b) OM圖、(c)拉曼光譜圖及(d)-(f)拉曼mapping圖,其中圖(a)與圖(b)拍攝位置相同,而中間紅色圓圈、上方藍色圓圈、下方綠色圓圈與箭頭分別代表單層、雙層與三層石墨烯......32
圖2-11 電解拋光機制示意圖................................................................33
圖2-12 電解拋光銅之PD (Potentiodynamic)曲線圖............................33
圖2-13 不同電壓下,進行電解拋光銅之電流密度-拋光時間曲線圖,其中兩張小圖分別為經電壓1.3 V (整平區)及2.0 V (氧氣生成區)拋光後的OM圖..............................................................34
圖2-14 (a)(b)未經拋光處理銅箔之不同倍率OM圖;(c)(d)石墨烯生長於未拋光銅箔上並轉印至SiO2/Si基板之不同倍率OM圖,圖(d)中小圖為A點之拉曼光譜圖................................................34
圖2-15 (a)石墨烯生長於電解拋光銅箔上並轉印至SiO2/Si基板之OM圖;(b)為圖(a)中A點及B點相對應之拉曼光譜圖;(c)未電解拋光及(d)電解拋光銅箔所製備石墨烯場效電晶體之電性圖................................................................................................35
圖2-16 雙層石墨烯電晶體之(a)OM圖(俯視圖)與(b)裝置示意圖(側面圖);(c)匣極電場位移作用的方向;(d)(左)原始雙層石墨烯與(右)匣極作用後的能帶圖(k為波向量).....................................36
圖2-17 (a)電晶體結構示意圖,(左至右)銅(111)基板、六方晶氮化硼基板及石墨烯;石墨烯費米能階偏移量(ΔEF)與(b)h-BN薄膜厚度(D)及(c)外加電場(Eext)之關係圖,圖中符號代表h-BN的層數............................................................................................37
圖2-18 氮摻雜石墨烯場效電晶體之(a)SEM圖及(b)元件示意圖;(c)與(d)分別為原始石墨烯及氮摻雜石墨烯元件在不同閘極電壓下的Id-Vd電性曲線(小圖為能帶結構示意圖);(e)為原始石墨烯及氮摻雜石墨烯元件之Id-Vg電性曲線(Vds = 0.5 V、1.0 V)................................................................................................38
圖2-19 三聚氰胺摻雜石墨烯之(a)流程示意圖;(b)原始石墨烯與三聚氰胺摻雜石墨烯場效電晶體電性變化圖................................39
圖2-20 氧化鋅-石墨烯複合薄膜電晶體之(a)氧化鋅截面SEM圖;(b)元件示意圖;(c) IDS-VGS電性圖................................................39
圖2-21 電子束激發製備石墨烯-氧化鋅複合薄膜之(a)氧化鋅截面SEM圖;(b)電晶體元件示意圖;(c)IDS-VGS電性圖;(d)片電阻值分布圖;(e)於空氣中放置兩周後的片電阻值分布圖…..40
圖2-22 (a)TiO2摻雜rGO之OM圖;(b) rGO與TiO2摻雜rGO電晶體之Id-Vg圖;(c)於真空下,不同的UV照射時間對TiO2摻雜rGO電晶體電性的影響;(d)於真空下,經UV照射後,TiO2摻雜rGO電晶體電性回復情形與時間的關係圖....................41
圖2-23 石墨烯之TEM圖:(a)低倍率下石墨烯階梯狀邊緣的形貌(紅色虛線),小圖為石墨烯之選區繞射圖;(b)石墨烯之HRTEM截面圖........................................................................................42
圖2-24 單層石墨烯於SiO2/Si基板上之AFM圖..................................42
圖2-25 (a)(上排圖)石墨烯於300 nm的SiO2/Si基板上之白光及不同波長OM圖;(b)圖中階梯狀的軌跡顯示出不同的顏色對比,相對應為1、2及3層石墨烯;(c)(下排圖)石墨烯於200 nm的SiO2/Si基板上之白光及不同波長OM圖................................43
圖2-26 (a)碳原子於G mode中的振動模式 Bond stretching mode (E2g);(b)碳原子於D mode中的振動模式Breathing mode (A1g)….43
圖2-27 (a)石墨及單層石墨烯之514 nm拉曼光譜圖;(b)514 nm拉曼與(c)633 nm拉曼鑑定不同層數石墨烯之2D-band強度比較圖................................................................................................44
圖2-28 二氧化鈦受紫外光照射所產生的激發電子傳遞至石墨烯之示意圖...........................................................................................45
圖3-1 電解拋光系統示意圖..................................................................54
圖3-2 熱化學氣相沉積系統示意圖......................................................54
圖3-3 以熱化學氣相沉積法製備石墨烯之流程圖..............................55
圖3-4 石墨烯轉印流程圖......................................................................55
圖3-5 上匣極結構之可撓式透明石墨烯場效電晶體製程示意圖......56
圖3-6 單面對準曝光機..........................................................................56
圖3-7 以氨氣為氮源製備氮摻雜二氧化鈦奈米顆粒之流程圖..........57
圖3-8 二氧化鈦與氮摻雜二氧化鈦摻雜石墨烯之透明可撓式場效電晶體製程示意圖........................................................................57
圖3-9 (a)紫外光與(b)可見光照射電晶體元件之裝置與示意圖…......58
圖4-1 銅箔(a)未經前處理及(b)經浸泡濃度1 M醋酸處理20分鐘,成長石墨烯後之表面OM圖;(c)與(d)分別為(a)與(b)之拉曼光譜圖..................................................................................................82
圖4-2 (a)成長於銅箔的石墨烯以及選定區域(30 μm × 30 μm)之OM圖;(b)為圖(a)網狀區域的拉曼映像之I2D/IG分布圖.....................82
圖4-3 (a)石墨烯轉印至SiO2/Si基板之OM圖;(b)與(c)為圖(a)箭頭1與2處之拉曼光譜圖...................................................................83
圖4-4 (a)石墨烯於SiO2/Si基板上之AFM圖;(b)為圖(a)白色虛線處之高度分布圖..............................................................................84
圖4-5 (a)PET基板與(b)未拋光石墨烯於PET基板之透光率分析......85
圖4-6銅箔無電解拋光處理之(a)OM圖、(c)SEM圖與(e)AFM圖;銅箔經電解拋光處理之(b)OM圖、(d)SEM圖與(f)AFM圖……..86
圖4-7石墨烯成長於(a)無電解拋光銅箔及(b)電解拋光銅箔之表面OM圖;(c)與(d)為圖(a)與(b)之SEM影像;(e)與(f)為圖(c)與(d)之高倍率SEM影像;(g)與(h)為圖(a)與(b)之拉曼光譜圖.........87
圖4-8 (a)電解拋光銅箔成長之石墨烯轉印至SiO2/Si基板的OM圖;(b)為圖(a)之拉曼光譜圖.............................................................88
圖4-9 (a)PET基板、(b)拋光石墨烯與(c)未拋光石墨烯於PET基板之透光率分析……........................................................................88
圖4-10 二氧化鈦奈米溶膠之(a)外觀圖、(b) SEM影像、(c)XRD繞射圖以及(d) PL光譜圖...................................................................89
圖4-11 (a)二氧化鈦摻雜石墨烯之OM圖;(b)為圖(a)中(i)和(ii)之拉曼圖譜...........................................................................90
圖4-12 P 25與氮摻雜二氧化鈦奈米顆粒之(a)外觀圖及(b-e) SEM影像、(f)XRD繞射圖及(g) PL光譜圖….............................................92
圖4-13氮摻雜二氧化鈦之ESCA全譜圖...............................................93
圖4-14氮摻雜二氧化鈦之ESCA(a-c) N 1s能譜圖、(d-f)Ti 2p 能譜圖、(g-i)O 1s 能譜圖........................................................................96
圖4-15 (a)氮摻雜二氧化鈦奈米顆粒摻雜石墨烯之OM圖;(b)為圖(a)中(i)和(ii)之拉曼圖譜...............................................................97
圖4-16 (a)可撓式透明石墨烯場效電晶體元件外觀圖(尺寸2 cm × 2 cm,含14個單位元件);(b)為一單位元件(圖(a)中方框)之放大OM圖;(c)為圖(b)方框之放大OM圖..................................98
圖4-17 原始石墨烯場效電晶體之R-VG電性曲線圖(VD = 0.01 V) (黑色實心方塊為實驗數據、紅色曲線為fitting曲線)..................99
圖4-18 二氧化鈦摻雜石墨烯(a)R500、(b)R400及(c)R300之場效電晶體R-VG電性曲線圖(VD = 0.01 V) (黑色實心方塊為實驗數據、紅色曲線為fitting曲線)..........................................................100
圖4-19 UV光照射對二氧化鈦摻雜石墨烯場效電晶體(a)R500、(b)R400及(c)R300之ID-VG電性圖(VD = 0.01 V)的影響.......101
圖4-20 UV光照射後,二氧化鈦摻雜石墨烯場效電晶體(a)R500、(b)R400及(c)R300之ID-VG電性圖(VD = 0.01 V)的變化情...102
圖4-21氮摻雜二氧化鈦(N600)摻雜石墨烯(a)NR500、(b)NR400及(c)NR300之場效電晶體R-VG電性曲線圖(VD = 0.01 V) (黑色實心方塊為實驗數據、紅色曲線為fitting曲線)....................103
圖4-22可見光照射對氮摻雜二氧化鈦(N600)摻雜石墨烯場效電晶體(a)NR500、(b)NR400及(c)NR300之ID-VG電性圖(VD = 0.01 V)的影響......................................................................................104
圖4-23可見光照射後,氮摻雜二氧化鈦(N600)摻雜石墨烯場效電晶體(a)NR500、(b)NR400及(c)NR300之ID-VG電性圖(VD=0.01 V)的變化情形..............................................................................105
圖4-24 (a)彎曲測試之示意圖;(b)簡易曲率半徑公式;(c)原始石墨烯、(d)二氧化鈦摻雜石墨烯及(e)氮摻雜二氧化鈦摻雜石墨烯之電晶體元件載子遷移率變化 (μ/μo)與曲率半徑關係圖.......106









表目錄
表4-1原始石墨烯與二氧化鈦摻雜石墨烯之電性比較......................80
表4-2 UV光對不同摻雜條件之二氧化鈦摻雜石墨烯電性影響........80
表4-3 UV光照射後,不同摻雜條件之二氧化鈦摻雜石墨烯之電性變化................................................................................................80
表4-4原始石墨烯與氮摻雜二氧化鈦摻雜石墨烯之電性比較..........81
表4-5可見光對不同摻雜條件之氮摻雜二氧化鈦摻雜石墨烯電性影響..................................................................................................81
表4-6 可見光照射後,不同摻雜條件之氮摻雜二氧化鈦摻雜石墨烯之電性變化......................................................................................81
參考文獻
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode”, Physical Review, Vol. 74, pp. 230-231, 1948.
[2] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Honec, P. Kim and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, Vol. 146, pp. 351-355, 2008.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, 2004.
[5] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics, Vol. 4, pp. 611-622, 2010.
[6] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-1314, 2009.
[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
[8] M. I. Katsnelson and K. S. Novoselov, “Graphene: new bridge between condensed matter physics and quantum electrodynamics”, Solid State Communications, Vol. 143, pp. 3-13, 2007.
[9] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler and Tapash Chakraborty, “Properties of graphene: a theoretical perspective”, Advances in Physics, Vol. 59, No. 4, pp. 261-482, 2010.
[10] B. Partoens and F. M. Peeters, “From graphene to graphite: electronic structure around the K point”, PHYSICAL REVIEW B, Vol. 74, pp. 075404(11), 2006.
[11] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
[12] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, Vol. 143, pp. 92-100, 2007.
[13] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, p. 1339, 1958.
[14] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[15] S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, Vol. 4, pp. 217-224, 2009.
[16] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
[17] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Vol. 45, pp. 1558-1565, 2007.
[18] S. Y. Chee, H. L. Poh, C. K. Chua, F. Šaněk, Z. Sofer and M. Pumera, “Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide”, Physical Chemistry Chemical Physics, Vol. 14, pp. 12794-12799, 2012.
[19] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B, Vol. 110, pp. 8535-8539, 2006.
[20] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chemistry of Materials, Vol. 19, pp.4396-4404, 2007.
[21] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek and M. Siaj, “Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors”, Carbon, Vol. 49, pp. 4204-4210, 2011.
[22] G. Kalita, K. Wakita, M. Umeno, Y. Hayashi and M. Tanemura, “Synthesis of continuous graphene on metal foil for flexible transparent electrode application”, in IEEE 5th International Nanoelectronics Conference, pp. 281-284, 2013.
[23] J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
[24] P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt (111): growth and substrate interaction”, Physical Review B, Vol. 80, pp. 245411 (10), 2009.
[25] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu and H. Gao, “Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001)”, Advanced Materials, Vol. 20, pp. 1-4, 2008.
[26] J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. M. zu Heringdorf, R. van Gastel, B. Poelsema and T. Michely, “Growth of graphene on Ir (111)”, New Journal of Physics, Vol. 11, pp. 023006 (22), 2009.
[27] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 113103 (3), 2008.
[28] C. Mattevi, H. Kim and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper”, Journal of Materials Chemistry, Vol. 21, pp. 3324-3334, 2011.
[29] 劉書宏,「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,博士論文,國立交通大學,中華民國九十五年七月
[30] 洪榮洲,「結合細微放電與電解拋光之微孔加工研究」,碩士論文,國立中央大學,中華民國九十三年六月
[31] S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li and M. S. Feng, “Microleveling mechanisms and applications of electropolishing on planarization of copper metallization”, Journal of Vacuum Science & Technology B, Vol. 20, pp. 2149-2153, 2002.
[32] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson, “Effect of substrate roughness and feedstock concentration on growth of wafer-Scale graphene at atmospheric pressure”, Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
[33] R. Lv, M. Terrones, “Towards new graphene materials: doped graphene sheets and nanoribbons”, Materials Letters, Vol. 78, pp. 209-218, 2012.
[34] Y. Zhang, T. T. Tang, C. Girit1, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene”, Nature, Vol. 459, pp. 820-823, 2009.
[35] M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong and P. J. Kelly, “Electrostatic doping of graphene through ultrathin hexagonal boron nitride films”, Nano Letters, Vol. 11, pp. 4631-4635, 2011.
[36] A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes”, ACS NANO, Vol. 4, pp. 3839-3844, 2010.
[37] A. A. Kaverzin, S. M. Strawbridge, A. S. Price, F. Withers, A. K. Savchenko, D. W. Horsell, “Electrochemical doping of graphene with toluene”, Carbon, Vol. 49, pp. 3829-3834, 2011.
[38] D. We, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Letters, Vol. 9, No. 5, pp. 1752-1758, 2009.
[39] H. Medina, Y. C. Lin, D. Obergfell and P. W. Chiu, “Tuning of charge densities in graphene by molecule doping”, Advanced Functional Materials, Vol. 21, pp. 2687-2692, 2011.
[40] H. Yoo, Y. Kim, J. Lee, H. Lee, Y. Yoon, G. Kim, and H.Lee, “n-Type reduced graphene oxide field-effect transistors (FETs) from photoactive metal oxides”, Chemistry - A European Journal, Vol. 18, pp. 4923-4929, 2012.
[41] X. Wang, L. Zhi and K. Müllen, “Transparent, conductive graphene electrodes for dye-Sensitized solar cells”, Nano Letters, Vol. 8, No. 1, pp. 323-327, 2008.
[42] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, pp. 063124 (3), 2007.
[43] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, pp. 14095-14107, 2000.
[44] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy”, Nano Letters, Vol. 10, pp. 751-758, 2010.
[45] L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports, Vol. 473, pp. pp. 51-87, 2009.
[46] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phononcoupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
[47] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen and A. T. S. Wee, “Raman studies of monolayer graphene: the substrate effect”, The Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.
[48] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, Vol. 97, pp. 187401 (4), 2006.
[49] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang and J. R. Gong, “Controllable N-doping of graphene”, Nano Letters, Vol. 10, pp. 4975-4980, 2010.
[50] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotechnology, Vol. 3, pp. 210-215, 2008.
[51] L. Zhang, S. Diao, Y. Nie, Kai Yan, N. Liu, B. Dai, Q. Xie, A. Reina, J. Kong and Z. Liu, “Photocatalytic patterning and modification of graphene”, Journal Of The American Chemical Society, Vol. 133, pp. 2706-2713, 2011.
[52] A. Yu, G. Wu, F. Zhang, Y. Yang and N. Guan, “Synthesis and characterization of N-doped TiO2 nanowires with visible light response”, Catalysis Letters, Vol. 129, pp. 507-512, 2009.
[53] M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek and L. Kavan, “Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers”, Chemistry of Materials, Vol. 22, pp. 4045-4055, 2010.
[54] R. Silveyra, L. D. L. T. Sa´enz, W. A. Flores, V. C. Martı´nez and A. A. Elgue´zabal, “Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation”, Catalysis Today, Vol. 107-108, pp. 602-605, 2005.
[55] K. Kobayakawa, Y. Murakami and Y. Sato, “Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 170, pp. 177-179, 2005.
[56] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. BLAKE, M. I. Katsnelson and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials, Vol. 6, pp. 652-655, 2007.
[57] B. N. Szafranek, D. Schall, M. Otto, D. Neumaier and H. Kurz, “High on/off ratios in bilayer graphene field effect transistors realized by surface dopants”, Nano Letters, Vol. 11, pp. 2640-2643, 2011.
[58] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc and S. K. Banerjee, “Realization of a high mobility dual-gated graphene field effect transistor with Al2O3 dielectric”, Applied Physics Letters, Vol. 94, pp. 062107 (3), 2009.
[59] Z. Zhang, H. Xu, H. Zhong and L. M. Peng, “Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements”, Applied Physics Letters, Vol. 101, pp. 213103 (4), 2012.
[60] B. J. Kim, H. Jang, S-K. Lee, B. H. Hong, J-H. Ahn and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics”, Nano Letters, Vol. 10, pp. 3464-3466, 2010.
[61] X. Yu, J. Kang, J. Zhang, L. Tian and Z. Yu, “Improving channel mobility in graphene-FETs by minimizing surface phonon scattering - a simulation study”, in Simulation of Semiconductor Processes and Devices, pp. 13-16, 2010.
[62] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Dielectric screening enhanced performance in graphene FET”, Nano Letters, Vol. 9, No. 7, pp. 2571-2574, 2009.
[63] F. Chen, J. Xia, D. K. Ferry and N. Tao, “Ionic screening of charged-impurity scattering in graphene”, Nano Letters, Vol. 9, No. 4, pp. 1621-1625, 2009.
[64] K. M. McCreary, K. Pi and R. K. Kawakami, “Metallic and insulating adsorbates on graphene”, APPLIED PHYSICS LETTERS, Vol. 98, pp. 192101(3), 2011.
[65] P. R. Wallace, “The band theory of graphite”, PHYSICAL REVIEW, Vol. 71, No. 9, pp. 622-634, 1947.
[66] T. T. Chen, H. P. Liu, Y. J. Wei, I. C. Chang, M. H. Yang, Y. S. Lin, K. L. Chan, H. T. Chiu and C. Y. Lee, “Porous titanium oxynitride sheets as electrochemical electrodes for energy storage”, Nanoscale, Vol. 6, pp. 5106–5109, 2014.
[67] W. Song, S. Y. Kwon, S. Myung, M. W. Jung, S. J. Kim, B. K. Min, M. A. Kang, S. H. Kim, J. Lim and K. S. An, “High-mobility ambipolar ZnO-graphene hybrid thin film transistors”, Scientific Reports, Vol. 4, pp. 4064(6), 2014.
[68] W. Song, Y. Kim, S. H. Kim, S. Y. Kim, M. J. Cha, I. Song, D. S. Jung, C. Jeon, T. Lim, S. Lee, S. Ju, W. C. Choi, M. W. Jung, K. S. An and C. Y. Park, “Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films”, APPLIED PHYSICS LETTERS, Vol.102, NO.5, pp. 053103(5), 2013.
[69] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liua and J. Shen, “Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid”, New Journal of Chemistry, Vol. 36, pp. 1385-1391, 2012.
[70] D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation”, Journal of Materials Science, Vol. 46, pp. 855-874, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *