帳號:guest(3.15.31.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭仲甫
論文名稱(中文):利用嵌段共聚物模化之無電電鍍製程 製備高催化活性之高規則度奈米網狀白金
論文名稱(外文):Nanoporous gyroid Platinum with High Catalytic Activity from Block Copolymer Template via Electroless Plating
指導教授(中文):賴志煌
何榮銘
口試委員(中文):古慶順
蔡德豪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031534
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:86
中文關鍵詞:白金電化學催化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:312
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
奈米多孔金屬是一種三維(3D)立體的奈米級多孔金屬結構,其包含了彼此相互交錯的奈米金屬晶粒,或可稱之為織構,且因其具有高孔隙,高比面積等特殊性質,結合金屬材料的本質和奈米孔洞材料的特性,因此,奈米多孔金屬有其特殊的性質,例如:較低的比重(ρMNMs/ρbulk)、提升電漿子行為(enhanced plasmonic behavior)、高強度重量比(high strength-to-weight ratio),以及因尺寸效應而提升之催化行為。由於上述的優點,因而引起了學界的關注,進而衍生出了許多應用,例如:電池型超電容(battery-like supercapacitors)、高功率密度電池(high power-density batteries)、電磁組件(electromagnetic composites)、表面強化雷曼光譜(surface-enhanced Raman spectroscopy)、抗菌支架(antimicrobial scaffolds)以及輕量化結構等等。
奈米多孔金屬相較於其他材質的奈米多孔隙材料是較難以形成的。若採用由上而下(bottom-up)的方式,只有少數幾種途徑可以完成,例如:利用溶凝膠反應(sol-gel process)所形成的奈米金屬顆粒直接進行組裝所形成的奈米金屬網絡,然而,可用溶凝膠反應製程的金屬種類有限;相對的,若採用由下而上的(top-down)方法製備奈米多孔金屬,要達到奈米尺度的分布有其難度。因此,儘管已經有許多方式可以形成奈米多孔金屬,但是這些方法並不能夠有效的達成高比表面積的薄膜或是塊材,也不能夠完全的控制而得到我們想要的孔洞形狀,因此,奈米多孔金屬於製成上仍面臨相當大的挑戰。目前有一簡單的方式可以得到具有規則結構排列的奈米多孔金屬,主要是利用金屬的奈米顆粒於多孔模板上的孔隙析出,例如,多孔隙的二氧化矽(MCMs Material)(A. Monnier, F. Schuth, Q. Huo, D. Margolese, 1993),以及具有陣列排列的膠狀晶體(A. A. Sakhidov, R. H. Baughman, Z. Iqbal, 1998)。儘管已有許多種不同支構結構的多孔隙二氧化矽已經被成功的合成出來了,但是其合成方式往往包含了許多複雜的製備步驟,而且要得到具有高比表面積且具連續結構之薄膜依然是一件困難的事情。至於具有陣列排列的膠狀晶體,由於它們的尺度是屬於微米級的,所以並不太適合應用於奈米科技。近十年來,許多研究都積極的想要將高分子嵌段共聚物應用於奈米製程當中,透過高分子嵌段共聚物的自組裝行為,將形成具有高規則性的奈米微結構。更進一步的,利用高分子嵌段共聚物的可分解性,例如,藉由臭氧分解(ozonolysis)(M. Park, C. Harrison, 1997)、紫外線裂離(UV degradation)(T. Thurn-Albrecht, R. Seiner, 2000),離子蝕刻(high reactive ion etch)(J. Y. Cheng, C. A. Ross, 2001),將其中之一的高分子鏈段除去,即可得到具有規則排列之奈米多孔材料,此外,含有聚交酯(Polylectide)的高分子嵌段共聚物(例如:polysterene-b-poly(D,L-lactide)(PS-PLA)和polysterene-b-poly(L-lectide)(PS-PLLA)) 因為聚酯類可以輕易地被鹼性水溶液水解,可用來製備奈米多孔隙的高分子材料, (A. S. Salusky, R. Olayo-Valles, 2001)
經由選擇性的脫去高分子嵌段共聚物模板中的可裂解材料後,可在高分子模板上製備出具有奈米級圓柱孔洞的高分子多孔材料。另一方面,奈米多孔隙高分子材料可被做為奈米反應器,利用電化學沉降(S. Ndoni, L. Li, 2009)、溶液凝膠製程(H. Y. Hsueh, H. Y. Chen, 2010),可將無機物填充於高分子孔隙之中。

具有奈米級結構的鎳(Nickel)是一樣非常重要的催化材料,其被廣泛的應用於科學界及工業界中。目前有許多種方式可以得到奈米級結構的鎳,像是電化學沉降(K. Nielsch, F. Muller 2000)、水熱合成法(Hydrothermal Synthesis)(Z. Liu, S. Li, 2003)、粒子電泳沉降(Spontaneous coalescence of nanoparticles)(T. Sehayek, M. Lahav, 2005)以及無電電鍍法(T. Hashimoto, K. Tsusumi 1997),上述的方式都可以完整的合成出具有零維的奈米鎳顆粒,與一維的鎳奈米結構。例如,Hashimoto 利用了polysterene-b-polyisporene(PS-b-PI)高分子嵌段共聚物進行自組裝行微後,緊接著除去PI鏈段而得到具有規則奈米孔隙的PS模板,把此模板當作反應器於其中進行無電電鍍反應,因此,鎳的奈米顆粒(直徑10nm)便經由無電電鍍析出於PS模板的奈米通道上。(T. Hashimoto, K. Tsusumi 1997);Nielsh等人則是將鎳經由電化學方式析出於陽極的氧化鋁薄膜上而Ni 奈米線(Nickel Nanowires) (K. Nielsch, F. Muller 2000);Qian等人利用水熱法合成出具單晶組成的無機奈米帶狀結構(Complex-surfactant assisted),於水溶液中進行還原,在相對低溫的環境下(110oC)製備單晶的Ni奈米帶(nanobelts)(寬度約500~1000nm)(Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian 2003);除此之外,Bittner等人利用病毒當作軟性模板(Tobacco Mosaic Virus)來合成Ni奈米線 (T. Sehayek, M. Lahav, 2005)。
Block copolymers (BCPs) that consist of chemically different components can self-assemble into various ordered nanostructures due to the incompatibility of constituted blocks. In recent decades, BCPs have been extensively investigated because of their ability to self-assemble into various ordered nanostructures, such as sphere, cylinder, lamellae, and gyroid. Among all of the nanostructures resulting from BCPs self-assembly, gyroid is one of the most appealing morphologies for practical applications because of its unique texture with a matrix and two continuous networks in 3D space. Here, we report the nanoporous platinum (Pt) with gyroid nanostructure fabricated by using a nanoporous polymer with gyroid nanochannels as a template. The nanoporous polymer template was obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Templated electroless plating can be conducted at ambient conditions to create precisely controlled Pt gyroid nanostructure with high crystallinity in a PS matrix. After removal of the PS matrix, well-interconnected nanoporous gyroid Pt can be successfully fabricated. In comparison with commercial available catalysts, the nanoporous Pt possesses superior macroscopic stability and peak specific activity, benefiting from the well-defined network structure with robust texture and the growth of the low-index crystalline facets of Pt.
Abstract I
Contents II
List of Table IV
Figure Caption V
Chapter 1 Introduction 1
1.1 Nanoporous Platinum for Highly Active Catalysts 1
1.1.1 One dimensional (1-D) Pt nanorod 1
1.1.2 Two dimensional nanoporous Pt membrane 10
1.1.3 Three dimensional nanoporous Pt network 19
1.2 Self-assembly 26
1.2.1 Self-assembly of block copolymers (BCPs) 27
1.2.2 Gyroid phases in BCPs 28
1.3 Templated Synthesis 33
1.3.1 Capillary forces for pore-filling process 34
1.3.2 Templated electroplating 36
1.3.3 Templated electroless plating 39
Chapter 2 Objectives 41
Chapter 3 Experimental 43
3.1 Synthesis of PS-PLLA BCPs 43
3.2 Sample Preparation 46
3.2.1 Nanoporous PS templates 46
3.2.2 Templated electroless plating 47
3.2.3 Nanoporous gyroid Platinum 49
3.3 Instruments 49
Chapter 4 Results and Discussion 53
4.1 Nanoporous Platinum from BCP Templates 54
4.1.1 Modified electroless plating 54
4.1.2 PS/Pt gyroid nanohybrids 55
4.1.3 Nanoporous gyroid Pt 61
4.1.4 Catalytic properties of nanoprous gyroid Pt 63
4.2 Templated Electroless Plating 72
4.2.1 Control of pore-filling and electroless plating for templating 72
4.2.2 Control of nucleation and growth 75
Chapter 5 Conclusions 79
References 81
_[1] N. Tian, Z. Y. Zou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
_[2] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. Disalvo, H. D. Abruna, Nature Mater. 2013, 12, 81.
_[3] T. Yu, D. Y. Kim. H. Zhang, Y. N. Xia, Angew. Chem. Int. Ed. 2011, 50, 2773.
_[4] a) J. Weissmuller, R. N. Viswanath, D. Kramer, P. Zimmer, R. Wurschum, H. Gleiter, Science 2003, 300, 312; b) H. J. Jin, X. L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmuller, Nano Lett. 2009, 10, 187.
_[5] J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, R. S. Williams, Adv. Mater. 2009, 21, 3754; b) D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams Nano Lett. 2004, 4, 136.
_[6] M. Michel, A. Taylor, R. Sekol, P. Podsiadlo, P. Ho, N. Kotov, L. Thompson, Adv. Mater. 2007, 19, 3859.
_[7] O. H. Kim, Y. H. Cho, S. H. Kang, H. Y. Park, M. Kim, J. W. Lim, D. Y. Chung, M. J. Lee, H. Choe, Y. E. Sung, Nature Commun. 2013, 4, 2473.
_[8] G. H. Guai, M. Y. Leiw, C. M. Ng, C. M. Li, Adv. Energy Mater. 2012, 2, 334.
_[9] A. Kloke, F. V. Stetten, R. Zengerle, S. Kerzenmacher, Adv. Mater. 2011, 23, 4976.
_[10] C. Pang, G. Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, K. Y. Suh, Nature Mater. 2012, 11, 795.
_[11] F. Y. Keith, C. Donavan, S. C. Kung, R. M. Penner, Nano Lett. 2012, 12, 2924.
_[12] X. Yu, S. Ye, J. Power Sources 2007, 172, 133.
_[13] Hyun June Shin, Ryong Ryoo, Zheng Liu, and Osamu Terasaki, J. Am. Chem. Soc. 2001, 123, 1246
_[14] S. H. Sun, F. Jaouen, J. P. Dodelet, Adv. Mater. 2008, 20, 3900.
_[15] B. Y. Xia, W. T. Ng, H. B. Wu, X. Wang, and X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 7213
_[16] C. Koenigsmann, W. P. Zhou, R. R. Adzic, E. Sutter, S. S. Wong, Nano Lett. 2010, 10, 2806.
_[17] C. L. Li, T. Sato, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 8050
_[18] S. M. Alia , G. Zhang , D. Kisailus , D. Li , S. Gu , K. Jensen ,
and Y. Yan, Adv. Funct. Mater. 2010, 20, 3742.
_[19] H. W. Liang, X. Cao, F. Zhou, C. H. Cui, W. J. Zhang, S. H. Yu, Adv. Mater. 2011, 23, 1467.
_[20] D. H. Wang, H. Luo, R. Kou, M. P. Gil, S. G. Xiao, V. O. Golub, Z. Z. Yang, C. J. Brinker, Y. F. Lu, Angew. Chem. Int. Ed. 2004, 43, 6169.
_[21] C. Chen, Y. Kang, Z. Huo, Z. W. Zhu, W. Y. Huang, H. L. Xin, J. D. Snyder, D. G. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li, N. M. Markovic, G. A. Somorjai, P. D. Yang, V. R. Stamenkovic, Science 2014, 343, 1339.
_[22] H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Angew. Chem. Int. Ed. 2004, 43, 1540.
_[23] H. A. Esfahani, Y. Nemoto, L. Wang, Y. Yamauchi, Chem. Commun. 2011, 47, 3885.
_[24] J. H. Han, E. Lee, S. J. Park, R. W. Chang, T. D. Chung, J. Phys. Chem. C 2010, 114, 9546.
_[25] Y. Doi, A. Takai, Y. Sakamoto, O. Terasaki, Y. Yamauchi, K. Kuroda, Chem. Commun. 2010, 46, 6365.
_[26] J. Kibsgaard, Y. Gorlin, Z. Chen, T. F. Jaramillo, J. Am. Chem. Soc. 2012, 134, 7758.
_[27] H. J. Wang, H. Y. Jeong, M. Imura, L. Wang, L. Radhakrishnan, N. Fujita, T. C. O. Terasaki, Y. Yamauchi, J. Am. Chem. Soc. 2011, 133, 14526.
_[28] M. Rauber, I. Alber, S. Muller, R. Neumann, O. Picht, C. Roth, A. Schokel, M. E. T. Molares, W. Ensinger, Nano Lett. 2011, 11, 2304.
_[29] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
_[30] Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
_[31] Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
_[32] Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
_[33] Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
_[34] (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
_[35] (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
_[36] Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
_[37] (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
_[38] (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
_[39] Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 21.
_[40] Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
_[41] Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
_[42] Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
_[43] Schoen, A. H. NASA TN D-5541, 1970.
_[44] Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Fetters, L. J. Macromolecules 1994, 27, 4063.
_[45] Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
_[46] Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
_[47] Furneaux, R. C.; Rigby, W.R.; Davidson, A. P. Nature 1989, 337, 147.
_[48] Fleisher, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids 1975, University of California Press, Berkeley, CA.
_[49] Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476.
_[50] Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecule 2007, 40, 2621.
_[51] Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H. J. Am. Chem. Soc. 2009, 131, 1356.
_[52] Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 1316.
_[53] Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. Nano Lett. 2009, 9, 2807.
_[54] Graham, A. H.; Lindsay, R. W.; Read, H. J. J. electrochem. Soc. 1965, 112, 401.
_[55] H. Y. Hsueh, Y. C. Huang, R. M. Ho, C. H. Lai, T. Makida, H. Hasegawa, Adv. Mater. 2011, 23, 3041.
_[56] H. Y. Hsueh, H. Y. Chen, Y. C. Hung, Y. C. Ling, S. J. Gwo, R. M. Ho, Adv. Mater. 2013, 25, 1780.
_[57] a) C. Li, Y. Yamauchi, Phys. Chem. Chem. Phys. 2013, 15, 3490; b) M. Cao, D. Wu, S. Gao, R. Cao, Chem. Eur. J. 2012, 18, 12978.
_[58] T. Iwasita, Electrochimica Acta 2002, 47, 3663.
_[59] A. E. Russel, A. Rose, Chem. Rev. 2004, 104, 4613.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *