帳號:guest(18.118.151.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佑明
論文名稱(中文):研究與開發熱力學平衡之材料系統應用於SOFC連接板
論文名稱(外文):Research and development of materials system with thermodynamic equilibrium for SOFC interconnect application
指導教授(中文):葉安洲
口試委員(中文):李名言
葉均蔚
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031520
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:80
中文關鍵詞:固態氧化燃料電池金屬連接板超合金熱力學平衡
相關次數:
  • 推薦推薦:0
  • 點閱點閱:189
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此研究致力於研究與開發熱力學平衡之材料系統應用於SOFC連接板。採用低熱膨脹係數超合金 HRA929作為基板,根據CALPHAD-based模擬軟體JMatPro所模擬之800°C平衡相圖來設計保護塗層成份。靶材與塗層成份之試片皆由真空電弧熔煉(VAM)製備,並鍍覆1 m的薄膜於HRA929上。利用恆溫氧化實驗來觀察塗層成份試片的氧化層成長情形並觀察塗層與基材間的交互擴散。材料系統的面積比電阻(ASR)使用四線量測法。塗層成份的熱膨脹係數是利用TMA量測而得。
由實驗結果得知本研究所研發的材料系統(coating 4+ HRA929)之抗氧化能力與面積比電阻表現具有商業化材料之水準,且塗層與基材間的熱膨脹表現相近。由鍍覆coating 4之HRA929試片,於800 °C下退火100小時,發現塗層與基材界面穩定且交互擴散情形很低(塗層與基材達到近熱力學平衡),可提升作為SOFC連接板之使用壽命。再者,此材料系統與LSM層的界面匹配性良好,且可生成錳鉻尖晶石抑制Cr向外擴散。
The present study focuses on developing a materials system for the SOFC interconnect application. This study has utilized a low thermal expansion material HRA929 as the substrate and designed a coating composition based on CALPHAD-based phase diagram simulation at 800°C. The ingots of coating compositions were prepared by vacuum arc melting (VAM); coating process was magnetron sputtering, and a 1 m thin film of the coating was deposited on the surface of HRA929. Isothermal oxidation tests were conducted to observe the growth of oxide scale and interdiffusion between coating and substrate. Four-wire method was employed to measure the high temperature area specific resistance (ASR) of the system. Thermal mechanical analysis was performed to measure the coefficient of thermal expansion (CTE). The ASR performance and oxidation resistibility of our materials system were comparable to commercialized material, while the CTE of coating and substrate was similar. The phase stability of the interface between coating and substrate was stable after 100 hours exposure at 800°C. Moreover, this materials system exhibited phase stability at the interface and interdiffusion was minimized, hence the life of acting as interconnect can be prolonged. Furthermore, the compatibility of coating and LSM was good and the formation of (Mn,Cr)3O4 can suppress the outward diffusion of Cr.
Abstract I
摘要 II
Acknowledge III
Table of Contents VII
List of Figures X
List of Tables XV
I. Introduction 1
II. Literature Review 3
2.1 Fuel Cells 3
2.2 Solid oxide fuel cells (SOFCs) 5
2.2.1 Advantages of SOFC 6
2.2.2 Electrolyte 7
2.2.3 Anode 7
2.2.4 Cathode 8
2.2.5 Interconnect 8
2.3 Protective coatings for interconnect 10
2.3.1 Rare earth perovskite coatings 10
2.3.2 Spinel coatings 11
2.4 Area Specific Resistance (ASR) 14
2.5 HRA929 15
2.6 Bond coat 17
2.7 Coating composition design tools - Jmatpro and Thermocalc 19
III. Materials and Methods 20
3.1 Material selection and coating design 20
3.2 Experimental procedure 24
3.3 Aging 25
3.4 Heat treatment 25
3.5 X-ray Diffractometer 28
3.6 SEM 28
3.7 Coefficient of thermal expansion (CTE) 28
3.8 Oxidation test 29
3.8.1 Oxidation weight gain test 29
3.8.2 Oxide scale observation 29
3.9 Area Specific Resistance (ASR) 29
3.10 Target preparation 30
3.11 Coating deposition 30
3.12 Interface stability and phase stability 31
IV. Results and Discussion 32
4.1 Thermodynamic equilibrium microstructure of HRA929 at 800 C 32
4.2 Coating materials – Intrinsic properties 38
4.2.1 Isothermal oxidation tests 38
4.2.2 Oxide scale analysis 42
4.2.3 Coefficient of thermal expansion 49
4.2.4 ASR 52
4.3 Coating compatibility and interface stability with substrate 54
4.4 Coating compatibility with LSM 58
4.5 Microstructure evolution of coating 4 63
V. Conclusions 70
VI. Future Work 71
VII. References 72
1. Birol, F., World energy prospects and challenges. Australian Economic Review, 2006. 39(2): p. 190-195.
2. http://www.world-nuclear.org/info/Current-and-Future-Generation/World-Energy -Needs-and-Nuclear-Power/.
3. http://www.arecibo-observatory.org/how-science-can-help-us-tackle-the-energy- crisis.php.
4. http://www.iea.org/publications/freepublications/publication/name,3752,en.html.
5. Hydrogen Energy. Available from: http://www.renewableenergyworld.com/rea/tech/hydrogen.
6. http://www.iaea.org/Publications/Magazines/Bulletin/Bull501/50104013940.pdf. [cited 2008.
7. http://www.taipower.com.tw/content/new_info/images/b12_04.txt.
8. Wachsman, E.D. and K.T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells. Science, 2011. 334(6058): p. 935-939.
9. Palsson, J., A. Selimovic, and L. Sjunnesson, Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation. Journal of Power Sources, 2000. 86(1-2): p. 442-448.
10. Steffen, C.J., J.E. Freeh, and L.M. Larosiliere, Solid oxide fuel cell/gas turbine hybrid cycle technology for auxiliary aerospace power. Proceedings of the ASME Turbo Expo 2005, Vol 5, 2005: p. 253-260.
11. EG&G Technical Services, E., Fuel Cell Handbook(U.S. Department of Energy, Office of Fossil Energy,
Washington, DC, ed. 7, 2004).
12. Williams, M.C., J.P. Strakey, and W.A. Surdoval, The US Department of Energy, Office of Fossil Energy stationary fuel cell program. Journal of Power Sources, 2005. 143(1-2): p. 191-196.
13. Badwal, S.P.S., Stability of solid oxide fuel cell components. Solid State Ionics, 2001. 143(1): p. 39-46.
14. Lin, C.K., et al., Aging effects on high-temperature creep properties of a solid oxide fuel cell glass-ceramic sealant. Journal of Power Sources, 2013. 241: p. 12-19.
15. Wu, J., et al., Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications. Journal of Power Sources, 2008. 175(2): p. 833-840.
16. Wu, W., et al., Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014. 39(2): p. 996-1004.
17. Energy, U.D.o., Fuel Cell Handbook (Seventh Edition)November 2004: Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia 26507-0880.
18. Kurzweil, P., HISTORY | Fuel Cells, in Encyclopedia of Electrochemical Power Sources, J. Garche, Editor 2009, Elsevier: Amsterdam. p. 579-595.
19. Warshay, M. and P.R. Prokopius, The Fuel-Cell in Space - Yesterday, Today and Tomorrow. Journal of Power Sources, 1990. 29(1-2): p. 193-200.
20. Sharaf, O.Z. and M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 2014. 32(0): p. 810-853.
21. Molin, S., M. Chen, and P.V. Hendriksen, Oxidation study of coated Crofer 22 APU steel in dry oxygen. Journal of Power Sources, 2014. 251: p. 488-495.
22. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000. 45(15-16): p. 2423-2435.
23. http://energy.gov/sites/prod/files/2014/03/f9/fc_comparison_chart_0.pdf.
24. Patakangas, J., et al., Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). Journal of Power Sources, 2014. 263(0): p. 315-331.
25. Singhal, S.C., Solid oxide fuel cells: An overview. Abstracts of Papers of the American Chemical Society, 2004. 228: p. U653-U653.
26. Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002. 6(5): p. 433-455.
27. Mogensen, M. and K. Kammer, Conversion of hydrocarbons in solid oxide fuel cells. Annual Review of Materials Research, 2003. 33: p. 321-331.
28. Wu, J., et al., A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008. 184(1): p. 104-119.
29. Litster, S. and G. McLean, PEM fuel cell electrodes. Journal of Power Sources, 2004. 130(1–2): p. 61-76.
30. Vernoux, P., J. Guindet, and M. Kleitz, Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. Journal of the Electrochemical Society, 1998. 145(10): p. 3487-3492.
31. Huang, K. and S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology: A critical review. Journal of Power Sources, 2013. 237: p. 84-97.
32. Alman, D.E. and P.D. Jablonski, Low coefficient of thermal expansion (CTE) nickel base superalloys for interconnect applications in intermediate temperature solid oxide fuel cells (SOFC). Superalloys 2004, 2004: p. 617-622.
33. George, R.A., Status of tubular SOFC field unit demonstrations. Journal of Power Sources, 2000. 86(1–2): p. 134-139.
34. Ivanov, S.I., et al., Mechanism of Chloride Sulfide Corrosion of High-Temperature Alloys. Inorganic Materials, 1988. 24(11): p. 1656-1657.
35. Magdefrau, N.J., et al., Effect of heat-treatment on the microstructure and hardness of a devitrified Al-3.0Y-3.0Gd-5.0Ni-1.0Fe-1.0Co alloy. Scripta Materialia, 2004. 51(6): p. 485-489.
36. She, Y., et al., Hydrogen permeability of sulfur tolerant Pd-Cu alloy membranes. Journal of Membrane Science, 2014. 452: p. 203-211.
37. McIntosh, S., et al., Effect of polarization on and implications for characterization of LSM-YSZ composite cathodes. Electrochemical and Solid State Letters, 2004. 7(5): p. A111-A114.
38. Wu, R., et al., An Operational Control-System for Hot-Rolling of High-Temperature and Corrosion-Resistant Alloys. Journal of Metals, 1988. 40(11): p. 13-13.
39. Thieme, M. and J. Linek, Application of Impedance Spectroscopy for Investigating Oxide Layers on Aluminum-Alloys Submitted to Different Surface Pretreatment and Corrosion in High-Temperature Water. Werkstoffe Und Korrosion-Materials and Corrosion, 1988. 39(10): p. 465-476.
40. Lyutyi, E.M., Problems of High-Temperature Liquid-Metal Corrosion of Refractory-Metals and Alloys. Soviet Materials Science, 1988. 24(5): p. 441-445.
41. Zhu, W.Z. and S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 362(1-2): p. 228-239.
42. Atkinson, A., et al., Advanced anodes for high-temperature fuel cells. Nature Materials, 2004. 3(1): p. 17-27.
43. Zhu, C., et al., Solution combustion synthesis of Ce0.6Mn0.3Fe0.1O2 for anode of SOFC using LaGaO3-based oxide electrolyte. International Journal of Hydrogen Energy, 2013. 38(30): p. 13419-13426.
44. Xie, Z., et al., Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011. 36(12): p. 7257-7264.
45. Chang, H.-Y., et al., Novel core–shell structure of perovskite anode and characterization. International Journal of Hydrogen Energy, 2012. 37(9): p. 7771-7778.
46. Li, X., et al., Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2009. 34(15): p. 6407-6414.
47. Sun, C.W., R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010. 14(7): p. 1125-1144.
48. Shaigan, N., D.G. Ivey, and W. Chen, Oxidation and electrical behavior of nickel/lanthanum chromite-coated stainless steel interconnects. Journal of Power Sources, 2008. 183(2): p. 651-659.
49. Zhou, J.R. and S. Bahadur, High-Temperature Erosion-Corrosion Behavior of Stainless-Steels. Journal of Metals, 1988. 40(11): p. 37-38.
50. Chen, X.B. and S.P. Jiang, Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3-delta (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method. Journal of Materials Chemistry A, 2013. 1(15): p. 4871-4878.
51. Piccardo, P., et al., Interconnect materials for next-generation solid oxide fuel cells. Journal of Applied Electrochemistry, 2009. 39(4): p. 545-551.
52. Zhu, W.Z. and S.C. Deevi, Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 2003. 348(1–2): p. 227-243.
53. Yang, Z.G., et al., Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. Journal of the Electrochemical Society, 2003. 150(9): p. A1188-A1201.
54. Yang, Z.G., Recent advances in metallic interconnects for solid oxide fuel cells. International Materials Reviews, 2008. 53(1): p. 39-54.
55. Zhu, W.Z. and S.C. Deevi, Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance. Materials Research Bulletin, 2003. 38(6): p. 957-972.
56. Toshihiro Uehara, et al., Effect of Mn–Co spinel coating for Fe–Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation. Journal of Power Sources, 2011. 196(17): p. P.7251– 7256.
57. Quadakkers, W.J., et al., Metallic interconnectors for solid oxide fuel cells - a review. Materials at High Temperatures, 2003. 20(2): p. 115-127.
58. Muller, A.C., D. Herbstritt, and E. Ivers-Tiffee, Development of a multilayer anode for solid oxide fuel cells. Solid State Ionics, 2002. 152: p. 537-542.
59. Shong, W.J., et al., Effects of lanthanum-based perovskite coatings on the formation of oxide scale for ferritic SOFC interconnect. Materials Chemistry and Physics, 2011. 127(1-2): p. 45-50.
60. Zhu, W.Z. and S.C. Deevi, Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 348(1-2): p. 227-243.
61. Shaigan, N., D.G. Ivey, and W.X. Chen, Metal-Oxide Scale Interfacial Imperfections and Performance of Stainless Steels Utilized as Interconnects in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2009. 156(6): p. B765-B770.
62. Linderoth, S., Solid oxide cell R&D at Riso National Laboratory-and its transfer to technology. Journal of Electroceramics, 2009. 22(1-3): p. 61-66.
63. Linderoth, S., et al., Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks. Journal of Materials Science, 1996. 31(19): p. 5077-5082.
64. Singh, P. and N.Q. Minh, Solid oxide fuel cells: Technology status. International Journal of Applied Ceramic Technology, 2004. 1(1): p. 5-15.
65. Fergus, J.W., Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 397(1-2): p. 271-283.
66. Scott, J.A. and D.C. Dunand, Processing and mechanical properties of porous Fe–26Cr–1Mo for solid oxide fuel cell interconnects. Acta Materialia, 2010. 58(18): p. 6125-6133.
67. Froitzheim, J., et al., Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources, 2008. 178(1): p. 163-173.
68. Geng, S.J., J.H. Zhu, and Z.G. Lu, Evaluation of Haynes 242 alloy as SOFC interconnect material. Solid State Ionics, 2006. 177(5–6): p. 559-568.
69. Hilpert, K., et al., Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. Journal of the Electrochemical Society, 1996. 143(11): p. 3642-3647.
70. Fergus, J.W., Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. International Journal of Hydrogen Energy, 2007. 32(16): p. 3664-3671.
71. Jablonski, P.D. and D.E. Alman, Oxidation resistance of novel ferritic stainless steels alloyed with titanium for SOFC interconnect applications. Journal of Power Sources, 2008. 180(1): p. 433-439.
72. Hua, B., et al., Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2010. 195(9): p. 2782-2788.
73. Jiang, S.P. and Y.D. Zhen, Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics, 2008. 179(27-32): p. 1459-1464.
74. Sakai, N., et al., Material transport and degradation behavior of SOFC interconnects. Solid State Ionics, 2006. 177(19–25): p. 1933-1939.
75. Shaigan, N., et al., A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, 2010. 195(6): p. 1529-1542.
76. Huang, K., P.Y. Hou, and J.B. Goodenough, Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings. Materials Research Bulletin, 2001. 36(1–2): p. 81-95.
77. Johnson, C., R. Gemmen, and N. Orlovskaya, Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material. Composites Part B: Engineering, 2004. 35(2): p. 167-172.
78. Piccardo, P., et al., ASR evaluation of different kinds of coatings on a ferritic stainless steel as SOFC interconnects. Surface and Coatings Technology, 2007. 202(4–7): p. 1221-1225.
79. Shaigan, N., W. Qu, and T. Takeda, Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. Metal/Air and Metal/Water Batteries, 2010. 28(32): p. 35-44.
80. Xie, Y.S., et al., Dense Protective Coatings for SOFC Interconnect Deposited by Spray Pyrolysis. Fuel Cell Seminar 2009, 2010. 26(1): p. 357-362.
81. Shaigan, N., D.G. Ivey, and W.X. Chen, Oxidation and electrical behavior of nickel/lanthanum chromite-coated stainless steel interconnects. Journal of Power Sources, 2008. 183(2): p. 651-659.
82. Qu, W., et al., Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects. Journal of Power Sources, 2006. 153(1): p. 114-124.
83. Petric, A. and H. Ling, Electrical conductivity and thermal expansion of spinels at elevated temperatures. Journal of the American Ceramic Society, 2007. 90(5): p. 1515-1520.
84. Yang, Z., et al., (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 2007. 32(16): p. 3648-3654.
85. Shaigan, N., D.G. Ivey, and W.X. Chen, Electrodeposition of Ni/LaCrO3 composite coatings for solid oxide fuel cell stainless steel interconnect applications. Journal of the Electrochemical Society, 2008. 155(4): p. D278-D284.
86. B. Buckner, H. Landes, and B. Rathjen, Solid Oxide Fuel Cells. ECS proceedings, ed. S. C. Singhal and H. Iwahara1993
87. Brian C. H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature 2001. 414: p. 345.
88. K.Sato and T.Ohno, Development of low thermal expansion superalloys. ASM International, 1993. 2(4): p. 31-32.
89. Pollock, T.M. and S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. Journal of Propulsion and Power, 2006. 22(2): p. 361-374.
90. Tarafder, M., et al., Microstructural Damage Evaluation in Ni-based Superalloy Gas Turbine Blades by Fractal Analysis. Procedia Engineering, 2013. 55(0): p. 289-294.
91. Guo, H., et al., High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films, 2008. 516(16): p. 5732-5735.
92. Reed, R.C., The Superalloys : Fundamentals and Applications2006: Cambridge University Press. 283.
93. Nicholls, J.R., Designing oxidation-resistant coatings. Jom-Journal of the Minerals Metals & Materials Society, 2000. 52(1): p. 28-35.
94. Chen, X., et al., Thermal aging behavior of plasma sprayed LaMgAl11O19 thermal barrier coating. Journal of the European Ceramic Society, 2011. 31(13): p. 2285-2294.
95. Padture, N.P., M. Gell, and E.H. Jordan, Materials science - Thermal barrier coatings for gas-turbine engine applications. Science, 2002. 296(5566): p. 280-284.
96. Schlichting, K.W., et al., Failure modes in plasma-sprayed thermal barrier coatings. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 342(1-2): p. 120-130.
97. Evans, A.G., et al., Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science, 2001. 46(5): p. 505-553.
98. Lehnert, G. and H. Meinhardt, Present state and trend of development of surface coating methods against oxidation and corrosion at high temperatures. Electrodeposition and Surface Treatment, 1972. 1(1): p. 71-76.
99. He, J., et al., Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD. Applied Surface Science, 2013. 274: p. 144-150.
100. Xu, Z., et al., Novel thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition. Journal of Alloys and Compounds, 2011. 509(11): p. 4273-4283.
101. Yao, J.Q., et al., Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy. Applied Surface Science, 2013. 286: p. 298-305.
102. Schulz, U., K. Fritscher, and A. Ebach-Stahl, Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surface & Coatings Technology, 2008. 203(5-7): p. 449-455.
103. Fossati, A., et al., Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surface and Coatings Technology, 2010. 204(21–22): p. 3723-3728.
104. Hu, W., et al., Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Materialia, 2006. 54(9): p. 2473-2488.
105. Zhang, Y., et al., Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings. Surface and Coatings Technology, 2003. 163–164(0): p. 19-24.
106. Tolpygo, V.K. and D.R. Clarke, Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Materialia, 2000. 48(13): p. 3283-3293.
107. Chen, J.H. and J.A. Little, Degradation of the platinum aluminide coating on CMSX4 at 1100 °C. Surface and Coatings Technology, 1997. 92(1–2): p. 69-77.
108. Angenete, J., K. Stiller, and E. Bakchinova, Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050 °C. Surface and Coatings Technology, 2004. 176(3): p. 272-283.
109. Kawagishi, K., et al., EQ coating: A new concept for SRZ-free coating systems. Superalloys 2008, 2008: p. 761-768.
110. Bai, B., et al., Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy. Corrosion Science, 2011. 53(9): p. 2721-2727.
111. Dai, S.-j., et al., Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software. Transactions of Nonferrous Metals Society of China, 2013. 23(10): p. 3027-3032.
112. Saunders, N., et al., Using JMatPro to model materials properties and behavior. Jom-Journal of the Minerals Metals & Materials Society, 2003. 55(12): p. 60-65.
113. Park, D.S., et al., Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Molecular Breeding, 2009. 24(1): p. 1-15.
114. Chiu, Y.T. and C.K. Lin, High-Temperature Stress-Rupture Properties of a Ferritic Steel for Solid Oxide Fuel Cell Interconnect. Solid Oxide Fuel Cells 12 (Sofc Xii), 2011. 35(1): p. 2581-2590.
115. Hitachi Metals, L., YSS超耐熱合金. p. 10.
116. http://www.hitachi-metals.co.jp/e/products/infr/ai/p10_02.html.
117. Liu, C.K., K.F. Lin, and R.Y. Lee, Characteristics of the Sintered Phlogopite Mica/SiO2-B2O3-Al2O3-BaO-La2O3 Glass Blends. Solid Oxide Fuel Cells 12 (Sofc Xii), 2011. 35(1): p. 2519-2526.
118. Yang, P., et al., Effects of pre-oxidation on the microstructural and electrical properties of La0.67Sr0.33MnO3-delta coated ferritic stainless steels. Journal of Power Sources, 2012. 213: p. 63-68.
119. Kusabiraki, K., et al., Epsilon and eta phases precipitated in an Fe-38Ni-13Co-4.7Nb-1.5Ti-0.4Si superalloy. Isij International, 1997. 37(1): p. 80-86.
120. Tammann, G., The heat tinting of metals. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1920. 111(1): p. 78-89.
121. Yang, Z.G., et al., Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. Journal of the Electrochemical Society, 2006. 153(10): p. A1852-A1858.
122. Yang, Z.G., et al., Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications. Journal of the Electrochemical Society, 2004. 151(11): p. A1825-A1831.
123. Honegger, K., et al., Evaluation of feritic steel interconnects for SOFC stacks. Solid Oxide Fuel Cells Vii (Sofc Vii), 2001. 2001(16): p. 803-810.
124. Sato, K. and T. Ohno, Development of Low Thermal-Expansion Superalloys. Journal of Materials Engineering and Performance, 1993. 2(4): p. 511-517.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *