|
參考文獻 1. Wang, J., Y. Li, and X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2013. 2(4): p. 443-467. 2. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243. 3. Yang, S., et al., High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. International Journal of Electrochemistry, 2012. 2012: p. 9. 4. Zhang, S., Li2MnSiO4/Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries. Soft Nanoscience Letters, 2012. 02(03): p. 0-0. 5. Wolfenstine, J. and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005. 142(1-2): p. 389-390. 6. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194. 7. Padhi, A.K., et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 1997. 144(5): p. 1609-1613. 8. Nytén, A., et al., Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications, 2005. 7(2): p. 156-160. 9. Dominko, R., et al., Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications, 2006. 8(2): p. 217-222. 10. Gover, R., et al., LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics, 2006. 177(26-32): p. 2635-2638. 11. Bruce, P.G., L.J. Hardwick, and K.M. Abraham, Lithium-air and lithium-sulfur batteries. MRS Bulletin, 2011. 36(07): p. 506-512. 12. Bruce, P.G., et al., Li-O(2) and Li-S batteries with high energy storage. Nat Mater, 2011. 11(2): p. 172. 13. Yang, Y., G. Zheng, and Y. Cui, Nanostructured sulfur cathodes. Chem Soc Rev, 2013. 42(7): p. 3018-32. 14. Littauer, E.L. and K.C. Tsai, ANODIC BEHAVIOR OF LITHIUM IN AQUEOUS-ELECTROLYTES .4. INFLUENCE OF TEMPERATURE. Journal of the Electrochemical Society, 1980. 127(3): p. 521-524. 15. Abraham, K.M. and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996. 143(1): p. 1-5. 16. Ogasawara, T., et al., Rechargeable Li2O2 electrode for lithium batteries. Journal of the American Chemical Society, 2006. 128(4): p. 1390-1393. 17. http:// www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500. html. 18. Rahman, M.A., X. Wang, and C. Wen, A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2013. 44(1): p. 5-22. 19. He, P., Y. Wang, and H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010. 12(12): p. 1686-1689. 20. Siraj, K., Past Present and Future of Superionic Conductors. International Journal of Nano and Material Sciences, 2012. 21. Yoo, E. and H. Zhou, Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. Acs Nano, 2011. 5(4): p. 3020-3026. 22. Hardwick, L.J. and P.G. Bruce, The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 178-185. 23. Xiao, J., et al., Optimization of Air Electrode for Li/Air Batteries. Journal of The Electrochemical Society, 2010. 157(4): p. A487. 24. Yang, Y., et al., Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. Journal of The Electrochemical Society, 2011. 158(10): p. B1211. 25. Henderson, N.L., et al., Ambient-pressure synthesis of SHG-Active Eu2Ti2O7 with a 110 layered perovskite structure: Suppressing pyrochlore formation by oxidation of perovskite-type EuTiO3. (vol 19, pg 1883, 2007). Chemistry of Materials, 2007. 19(24): p. 6058-6058. 26. Cheng, H. and K. Scott, Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2010. 195(5): p. 1370-1374. 27. Yang, X.-h., P. He, and Y.-y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry Communications, 2009. 11(6): p. 1127-1130. 28. Mirzaeian, M. and P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009. 54(28): p. 7444-7451. 29. Arai, H., S. Muller, and O. Haas, AC impedance analysis of bifunctional air electrodes for metal-air batteries. Journal of the Electrochemical Society, 2000. 147(10): p. 3584-3591. 30. Ottakam Thotiyl, M.M., et al., The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc, 2013. 135(1): p. 494-500. 31. Aurbach, D., et al., THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS. Journal of Electroanalytical Chemistry, 1991. 297(1): p. 225-244. 32. Liu, K.C. and M.A. Anderson, Porous nickel oxide films for electrochemical capacitors, in Materials for Electrochemical Energy Storage and Conversion - Batteries, Capacitors and Fuel Cells, D.H. Doughty, et al., Editors. 1995. p. 427-432. 33. Read, J., Characterization of the Lithium/Oxygen Organic Electrolyte Battery. Journal of The Electrochemical Society, 2002. 149(9): p. A1190. 34. Read, J., et al., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery. Journal of The Electrochemical Society, 2003. 150(10): p. A1351. 35. Higgins, D.C., D. Meza, and Z. Chen, Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2010. 114(50): p. 21982-21988. 36. Kuboki, T., et al., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. Journal of Power Sources, 2005. 146(1-2): p. 766-769. 37. L. I. Soliman, W.M.S., Some Physical Properties of Vinylpyridine Carbon Black Composites. Egypt. 2002. 25. 38. Dubot, P. and P. Cenedese, Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Physical Review B, 2001. 63(24). 39. Tsubomura, H., et al., DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature, 1976. 261(5559): p. 402-403. 40. Hull, R.V., et al., Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chemistry of Materials, 2006. 18(7): p. 1780-1788. 41. Lin, Y.H., et al., Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal of Physical Chemistry B, 2005. 109(30): p. 14410-14415. 42. Li, X.M., et al., Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study. Journal of Molecular Structure: THEOCHEM, 2009. 901(1-3): p. 103-109. 43. Qian, Y., et al., Facile Preparation and Electrochemical Properties of V2O5-Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2012. 159(8): p. A1135-A1140. 44. Kaniyoor, A., et al., Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 2009. 1(3): p. 382-6.
|