帳號:guest(18.117.8.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江冠廷
論文名稱(中文):PVdF比例及白金粒子對鋰空氣電池的電性表現影響
論文名稱(外文):Influence of Pt Nanoparticles and Fraction of PVdF on the Electrochemical Performance of Lithium Air Battery
指導教授(中文):蔡哲正
口試委員(中文):顏光甫
蔡哲正
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031514
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:電池鋰空氣電池石墨烯
相關次數:
  • 推薦推薦:0
  • 點閱點閱:623
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
鋰空氣電池因為使用鋰金屬做為電池陽極,並自空氣中擷取氧氣作為電池陰極,因此大幅減少電池本身載重,提升單位重量能量密度,擁有高達3860 mAhg-1的理論電容量,是目前最接近石油能量密度的替代性能源載體,在面臨能源危機的當下,有潛力成為新興的替代性能源載體。
鋰空氣電池的陰極為氧氣,在其他電池中原本應為陰極的位置,取而代之的是可催化充放電反應的多孔空氣電極,多使用可有效降低反應活化能的材料製作,以提升鋰空氣電池的電性表現,除此之外空氣電極的孔隙分佈會影響氣體可反應的有效面積,進而影響催化劑的利用效率決定最後電性表現的優劣。
本研究中使用Graphene做為空氣電極基材,探討電極的製作過程中調變黏著劑 (binder)比例是否會影響空氣電極的孔隙率,並在Graphene基材中接合白金粒子,比較接合前後的電性表現判斷白金是否可以有效降低充放電反應的活化能,藉以控制鋰空氣電池的電性表現。
目錄

摘要 I
目錄 II
圖目錄 III
表目錄 VI
第一章 緒論 1
第二章 文獻回顧 14
第三章實驗步驟 19
3.1 Nature Graphite Flakes的酸化 19
3.2以化學合成在Graphene上接Pt 21
3.3電極片製作 22
3.4電池組裝 22
3.5電池測試 24
3.6自製純氧系統盒 25
3.7 X-ray Diffraction (相鑑定) 26
3.8掃描式電子顯微鏡(SEM) 26
第四章結果與討論 27
4.1不同多孔空氣電極製程(塗佈、抽濾、Dip coating) 27
4.2 XRD圖分析 30
4.3比較800目與1800目 31
4.4電解液的揮發對於放電的影響 33
4.5隔離膜 35
4.6PVdF對於電性的影響 37
第五章結論 49
第六章參考文獻 51

圖目錄
圖1、發展中能源載體能量密度比較。 1
圖2、鋰空氣電池構造圖。 5
圖3、鋰空氣電池四種電解液示意圖。 (a)水系(b)非水系(c)混合系 (d)故態電解液。 6
圖4、 (a)各種以錳化物混入多孔碳材作為催化物的空氣電極:α-MnO2做為塊材及奈米線形式、β-MnO2做為塊材及奈米線形式、γ-MnO2、λ-MnO2、Mn2O3、Mn3O4等。 (b)α-MnO2在第2、3、5圈的充放電曲線。 9
圖5、(a)鋰空氣電池分別使用碳黑 (黑線,85 mAg-1carbon) 及PtAu (紅線,100mAg-1carbon),製作多孔空氣電極在第三圈以0.04 mAcm-2electrode電流密度進行電性測試。(b) 在通入Ar和O2的電池中對PtAu/C以100 mAg-1carbon電流進行背景量測 11
圖6、酸化流程圖 20
圖7、化學合成鍵接白金流程圖 21
圖8、空氣電池組裝示意圖。 23
圖9、純氧盒示意圖。 25
圖10、使用Graphite Oxide製作成電極的放電曲線。 27
圖11、抽濾製作的空氣電極放電曲線。 28
圖12、分別以PAA和PVdF做為binder製作空氣電極。 30
圖13、Graphite, Graphite oxide, Graphene film XRD圖。 31
圖14、抽濾製作的空氣電極XRD圖。 31
圖15、1800目與800目不鏽鋼網製作空氣電極比較圖 33
圖16、調變不同的放電速率對於放電量的影響。 35
圖17、擦拭紙與濾紙作為隔離膜電性比較圖 37
圖18、調變PVdF對放電表現影響。 38
圖19、PVdF對充電表現的影響 39
圖20、(a)Graphene:PVdF:NMP = 0.02 g:0.005 g:0.4 mL電池前五圈放電。( b )Graphene:PVdF:NMP = 0.02 g:0.005 g:0.4 mL電池前五圈充電。 40
圖21、( a )Graphene:PVdF:NMP = 0.02 g:0.006 g:0.4 mL電池前五圈放電。( b )Graphene:PVdF:NMP = 0.02 g:0.006 g:0.4 mL電池前五圈充電。 41
圖22、( a )Graphene:PVdF:NMP = 0.02 g:0.007 g:0.4 mL電池前五圈放電。( b )Graphene:PVdF:NMP = 0.02 g:0.007 g:0.4 mL電池前五圈充電。 41
圖23、( a )Graphene:PVdF:NMP = 0.02 g:0.008 g:0.4 mL電池前五圈放電。( b )Graphene:PVdF:NMP = 0.02 g:0.008 g:0.4 mL電池前五圈充電。 42
圖24、不同PVdF量與0.02ggraphene混合出的電極片在SEM下形貌 (a) 0.005 g, (b) 0.006 g, (c) 0.007 g,(d) 0.008 g,(e) 0.01 g。 43
圖25、Graphene接上白金第一圈放電表現。 44
圖26、Graphene接上白金第一圈充電表現。 45
圖27、Graphene接上白金XRD圖。 46
圖28、Graphene沒接上白金FTIR圖 47
圖29、Graphene接上白金FTIR圖。 48
圖30、FTIR頻譜 ( a ) graphite, ( b ) f-G ( c ) Pt/f-G 。 48

表目錄
表1、各類金屬氧化物催化物。 10
表2、各種碳材多孔空氣電極。 17

參考文獻
1. Wang, J., Y. Li, and X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2013. 2(4): p. 443-467.
2. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
3. Yang, S., et al., High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. International Journal of Electrochemistry, 2012. 2012: p. 9.
4. Zhang, S., Li2MnSiO4/Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries. Soft Nanoscience Letters, 2012. 02(03): p. 0-0.
5. Wolfenstine, J. and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005. 142(1-2): p. 389-390.
6. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997. 144(4): p. 1188-1194.
7. Padhi, A.K., et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 1997. 144(5): p. 1609-1613.
8. Nytén, A., et al., Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications, 2005. 7(2): p. 156-160.
9. Dominko, R., et al., Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications, 2006. 8(2): p. 217-222.
10. Gover, R., et al., LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics, 2006. 177(26-32): p. 2635-2638.
11. Bruce, P.G., L.J. Hardwick, and K.M. Abraham, Lithium-air and lithium-sulfur batteries. MRS Bulletin, 2011. 36(07): p. 506-512.
12. Bruce, P.G., et al., Li-O(2) and Li-S batteries with high energy storage. Nat Mater, 2011. 11(2): p. 172.
13. Yang, Y., G. Zheng, and Y. Cui, Nanostructured sulfur cathodes. Chem Soc Rev, 2013. 42(7): p. 3018-32.
14. Littauer, E.L. and K.C. Tsai, ANODIC BEHAVIOR OF LITHIUM IN AQUEOUS-ELECTROLYTES .4. INFLUENCE OF TEMPERATURE. Journal of the Electrochemical Society, 1980. 127(3): p. 521-524.
15. Abraham, K.M. and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996. 143(1): p. 1-5.
16. Ogasawara, T., et al., Rechargeable Li2O2 electrode for lithium batteries. Journal of the American Chemical Society, 2006. 128(4): p. 1390-1393.
17. http:// www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500. html.
18. Rahman, M.A., X. Wang, and C. Wen, A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2013. 44(1): p. 5-22.
19. He, P., Y. Wang, and H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010. 12(12): p. 1686-1689.
20. Siraj, K., Past Present and Future of Superionic Conductors. International Journal of Nano and Material Sciences, 2012.
21. Yoo, E. and H. Zhou, Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts. Acs Nano, 2011. 5(4): p. 3020-3026.
22. Hardwick, L.J. and P.G. Bruce, The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 178-185.
23. Xiao, J., et al., Optimization of Air Electrode for Li/Air Batteries. Journal of The Electrochemical Society, 2010. 157(4): p. A487.
24. Yang, Y., et al., Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium Air Batteries. Journal of The Electrochemical Society, 2011. 158(10): p. B1211.
25. Henderson, N.L., et al., Ambient-pressure synthesis of SHG-Active Eu2Ti2O7 with a 110 layered perovskite structure: Suppressing pyrochlore formation by oxidation of perovskite-type EuTiO3. (vol 19, pg 1883, 2007). Chemistry of Materials, 2007. 19(24): p. 6058-6058.
26. Cheng, H. and K. Scott, Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2010. 195(5): p. 1370-1374.
27. Yang, X.-h., P. He, and Y.-y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry Communications, 2009. 11(6): p. 1127-1130.
28. Mirzaeian, M. and P.J. Hall, Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009. 54(28): p. 7444-7451.
29. Arai, H., S. Muller, and O. Haas, AC impedance analysis of bifunctional air electrodes for metal-air batteries. Journal of the Electrochemical Society, 2000. 147(10): p. 3584-3591.
30. Ottakam Thotiyl, M.M., et al., The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc, 2013. 135(1): p. 494-500.
31. Aurbach, D., et al., THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS. Journal of Electroanalytical Chemistry, 1991. 297(1): p. 225-244.
32. Liu, K.C. and M.A. Anderson, Porous nickel oxide films for electrochemical capacitors, in Materials for Electrochemical Energy Storage and Conversion - Batteries, Capacitors and Fuel Cells, D.H. Doughty, et al., Editors. 1995. p. 427-432.
33. Read, J., Characterization of the Lithium/Oxygen Organic Electrolyte Battery. Journal of The Electrochemical Society, 2002. 149(9): p. A1190.
34. Read, J., et al., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery. Journal of The Electrochemical Society, 2003. 150(10): p. A1351.
35. Higgins, D.C., D. Meza, and Z. Chen, Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2010. 114(50): p. 21982-21988.
36. Kuboki, T., et al., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. Journal of Power Sources, 2005. 146(1-2): p. 766-769.
37. L. I. Soliman, W.M.S., Some Physical Properties of Vinylpyridine Carbon Black Composites. Egypt. 2002. 25.
38. Dubot, P. and P. Cenedese, Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Physical Review B, 2001. 63(24).
39. Tsubomura, H., et al., DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature, 1976. 261(5559): p. 402-403.
40. Hull, R.V., et al., Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chemistry of Materials, 2006. 18(7): p. 1780-1788.
41. Lin, Y.H., et al., Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal of Physical Chemistry B, 2005. 109(30): p. 14410-14415.
42. Li, X.M., et al., Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study. Journal of Molecular Structure: THEOCHEM, 2009. 901(1-3): p. 103-109.
43. Qian, Y., et al., Facile Preparation and Electrochemical Properties of V2O5-Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2012. 159(8): p. A1135-A1140.
44. Kaniyoor, A., et al., Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 2009. 1(3): p. 382-6.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *