|
1. Babaei, M. and N. Alizadeh, Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 617-626. 2. Hojati-Talemi, P., A.G. Kannan, and G.P. Simon, Fusion of carbon nanotubes for fabrication of field emission cathodes. Carbon, 2012. 50(2): p. 356-361. 3. Yan, X., B.-K. Tay, and P. Miele, Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 2008. 46(5): p. 753-758. 4. Yuge, R., et al., Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Applied Surface Science, 2012. 258(18): p. 6958-6962. 5. Niu, Z., et al., A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy & Environmental Science, 2012. 5(9): p. 8726. 6. Ahn, D., et al., Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. Journal of Power Sources, 2012. 212: p. 66-72. 7. Cohen, D.J., et al., A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett, 2012. 12(4): p. 1821-5. 8. Slobodian, P., P. Riha, and P. Saha, A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon, 2012. 50(10): p. 3446-3453. 9. Leghrib, R., et al., Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensors and Actuators B: Chemical, 2010. 145(1): p. 411-416. 10. Hu, L.B., et al., Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity. Advanced Energy Materials, 2011. 1(4): p. 523-527. 11. 侯鈺玲, 奈米碳管海棉氣體檢測器的製作與特性研究. 2013, 國立清華大學材料科學工程學系碩士論文: 新竹市. 12. Xu, Y., J. Guo, and C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9562. 13. Gui, X., et al., Carbon nanotube sponges. Advanced Materials, 2010. 22(5): p. 617-21. 14. Wang, L., et al., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011. 21(45): p. 18295. 15. 謝家齊, 奈米碳管海綿之製造與特性研究. 2011, 國立清華大學材料科學工程學系碩士論文: 新竹市. 16. Bryning, M.B., et al., Carbon nanotube aerogels. Advanced Materials, 2007. 19(5): p. 661-664. 17. Yang, M., H.C. Kim, and S.H. Hong, DMMP gas sensing behavior of ZnO-coated single-wall carbon nanotube network sensors. Materials Letters, 2012. 89: p. 312-315. 18. Jing, H.J., Y.D. Jiang, and X.S. Du, Dimethyl methylphosphonate detection with a single-walled carbon nanotube capacitive sensor fabricated by airbrush technique. Journal of Materials Science-Materials in Electronics, 2013. 24(2): p. 667-673. 19. Meng, F.-L., et al., Electronic chip based on self-oriented carbon nanotube microelectrode array to enhance the sensitivity of indoor air pollutants capacitive detection. Sensors and Actuators B: Chemical, 2011. 153(1): p. 103-109. 20. Albiss, B.A., et al., NO2 Gas Sensing Properties of ZnO/Single-Wall Carbon Nanotube Composites. Ieee Sensors Journal, 2010. 10(12): p. 1807-1812. 21. Ma, N., Characterization of carbon nanotubes based resistive and capacitive gas sensors. 2007, University of Kentucky Doctoral Dissertations. Paper 558. 22. Slobodian, P., et al., Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon, 2011. 49(7): p. 2499-2507. 23. Lee, K., et al., Single-walled carbon nanotube/Nafion composites as methanol sensors. Carbon, 2011. 49(3): p. 787-792. 24. Kar, P., N.C. Pradhan, and B. Adhikari, Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material. Sensors and Actuators B: Chemical, 2009. 140(2): p. 525-531. 25. Kar, P. and A. Choudhury, Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors and Actuators B: Chemical, 2013. 183: p. 25-33. 26. Chen, Y., et al., Novel capacitive sensor: Fabrication from carbon nanotube arrays and sensing property characterization. Sensors and Actuators B: Chemical, 2009. 140(2): p. 396-401. 27. Dokmeci, M. and K. Najafi, A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. Journal of Microelectromechanical Systems, 2001. 10(2): p. 197-204. 28. Hong, H.P., et al., Percolated pore networks of oxygen plasma-activated multi-walled carbon nanotubes for fast response, high sensitivity capacitive humidity sensors. Nanotechnology, 2013. 24(8): p. 085501. 29. Bissell, R.A., K.C. Persaud, and P. Travers, The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors. Physical Chemistry Chemical Physics, 2002. 4(14): p. 3482-3490. 30. Martos, P.A., A. Saraullo, and J. Pawliszyn, Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air. Analytical Chemistry, 1997. 69(3): p. 402-408.
|