帳號:guest(3.138.67.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴世恩
作者(外文):Lai, Shih-En
論文名稱(中文):利用電子束直寫奈米尺度的圖案化金屬銅
論文名稱(外文):Direct-Writing Cu Nano-Pattern with Electron Beam
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
口試委員(中文):蔡哲正
戴麟靄
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031506
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:電子束直寫圖案化金屬銅
外文關鍵詞:electron beamdirect-writingCu nano pattern
相關次數:
  • 推薦推薦:0
  • 點閱點閱:571
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用電子束,由硫酸銅水溶液薄膜中直寫出奈米尺度圖案化金屬銅 (Cu pattern),反應式為: Cu2+ + 2e- → Cu,並直接沉積於基板表面。
本研究使用穿透式電子顯微鏡 (transmission electron microscopy, TEM) 做為電子束來源,型號為JEOL JEM-2010,TEM不僅能提供高聚焦且易操控的電子束來還原銅離子,並且能於直寫的過程中進行高解析度的臨場觀測。此外,硫酸銅水溶液薄膜則有助於圖案化金屬銅的生成,且能限制其還原於基板表面,而非漂浮於水溶液中。為了上述目的,本研究使用一專為TEM設計之溶液載具K-kit,K-kit能將溶液封存於其中,並於TEM的高真空環境裡進行觀測。硫酸銅水溶液以薄膜的形式,舖附在K-kit的上下兩層氮化矽薄膜上。如此一來,便可在TEM裡,以預先設計的路徑連續地移動電子束,來還原出圖案化的金屬銅。
為了直寫出連續且均勻的金屬銅圖形,本研究探討K-kit間隙 (即上下兩層氮化矽薄膜之距離)、電子束照射時間、及硫酸銅水溶液濃度對於本反應的影響,並於其中尋找最佳參數進行圖案化金屬銅的直寫。在K-kit間隙的部分,實驗中發現間隙會影響水溶液薄膜的厚度,而2 um間隙的K-kit能生成適當的水溶液薄膜厚度,幫助此直寫反應的進行。在電子束照射時間的探討,隨著電子束照射的時間越長,所還原的金屬銅將越厚。硫酸銅水溶液濃度太低會使得直寫的直線不連續,僅在電子束移動的路徑上留下銅奈米粒子,濃度太高,則很容易造成非預期的銅奈米粒子析出。
最後,本研究利用上述各個最佳化參數,來進行奈米尺度圖案化金屬銅的直寫,並成功直寫出所設計的圖形,驗證此方法之可行性。期望未來經過更仔細的研究與開發,能將此方法應用於工業界上,為奈米尺度圖案化金屬的製作提供嶄新的一頁。
The electron beam (e-beam) was utilized to direct-writing nano-scale Cu patterns on a surface with a thin aqueous layer of CuSO4 solution, through the reaction of Cu2+ + 2e- → Cu.
A transmission electron microscopy (TEM, model: JEOL JEM 2010) served as the e-beam source. The TEM not only provided highly convergent and controllable e-beam but also in-situ and high-resolution imaging after writing process. Thin aqueous layer facilitated the formation of Cu patterns and helped to confine the writing on the surface. For this demonstration, liquid sample holder (K-kit) for TEM was employed to form a sealed space in a TEM. The aqueous CuSO4 solution inside the sample holder was allowed to partially dry-off until a thin aqueous layer was left on the surface. E-beam was thus manipulated with pre-designed path to reduce the Cu ion in the solution and form the desired patterns.
The influence of gap of K-kit (the spacing between upper and lower Si3N4 film), e-beam exposure time, and concentration of CuSO4(aq) was studied to find the optimized condition for direct-writing of Cu patterns. It was found that the gap of K-kit would impact the thickness of CuSO4(aq) solution thin film, and K-kit with 2 um gap could create a suitable thickness to facilitate the reaction. When it comes to the influence of e-beam exposure time, it was found that the thickness of reduced Cu increased with the increase of exposure time. At an insufficient CuSO4(aq) concentration, the Cu patterns would become discontinuous and only Cu nanoparticles were left on the e-beam moving path. On the other hand, Cu nanoparticles would freely nucleate near Cu patterns at an excessive CuSO4(aq) concentration.
Finally, an optimized condition was used for nano-scale Cu patterns direct-writing successfully. This method shows significant potential for the application on patterned metal fabrication and worth further detailed study and development.
目錄

摘要 i
Abstract iii
誌謝 v
目錄 viii
圖目錄 xi
表目錄 xv
第一章 緒論 1
第二章 文獻回顧 3
2.1 電子束誘發由液態前驅物中之金屬還原 (Liquid Phase Electron Beam Induced Deposition, LP-EBID) 3
2.1.1 放射分解反應 (Radiolysis) 3
2.1.2 LP-EBID技術的發展現況 5
2.2 圖案化金屬銅 (Cu pattern) 的製作 7
2.2.1 半導體業界的銅線製作方法 7
2.2.2 電子束誘發由氣態前驅物中還原銅 9
2.2.3 雷射光誘發由液態前驅物中還原銅 10
第三章 實驗流程與方法 11
3.1 實驗步驟 13
3.1.1 溶液載具K-kit之結構 13
3.1.2 試片製備 16
3.1.3 電子束誘導金屬銅直寫及臨場觀測之步驟 28
3.2 儀器簡介 30
3.2.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 30
3.2.2 X光能量散佈分析儀 (Energy-dispersive X-ray Spectrometer, EDX) 32
3.2.3 電子能量損失譜分析儀 (Electron Energy Loss Spectroscopy, EELS) 34
第四章 實驗結果與討論 36
4.1 K-kit使用前處理 36
4.1.1 清洗K-kit 36
4.1.2 親水處理 38
4.2 金屬銅直寫之最佳化 41
4.2.1 K-kit間隙對直寫金屬銅的影響 41
4.2.2 電子束照射時間對直寫金屬銅的影響 46
4.2.3 硫酸銅水溶液濃度對直寫金屬銅的影響 49
4.2.4 直寫圖案化金屬銅 51
4.3 金屬銅直寫的分析 53
4.3.1 圖案化金屬銅之成分確認 53
4.3.2 兩層銅圖形於K-kit中實際距離的量測 58
4.3.3 間隙為2 m的K-kit之水溶液厚度量測 60
4.3.4 銅圖形之厚度計算 63
4.3.5 電子束照射時間與所還原金屬銅厚度作圖 66
4.3.6 反應級數的計算 68
第五章 結論 70
第六章 未來展望 72
參考文獻 73
本研究產出之論文發表 77
[1] A. Pratt, "Overview of the Use of Copper Interconnects in the Semiconductor Industry," Advanced Energy Industries, Inc., 2004.

[2] M. Quirk and J. Serda, "Manutacturing Technology," Prentice Hall, 2001.

[3] O. Vazquez-Mena, T. Sannomiya, L. G. Villanueva, J. Voros, and J. Brugger, "Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications," ACS Nano, vol. 5, pp. 844-853, 2011.

[4] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, et al., "Nanostructured plasmonic sensors," Chem Rev, vol. 108, pp. 494-521, Feb 2008.

[5] A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. R. Van Duyne, and S. L. Zou, "Plasmonic materials for surface-enhanced sensing and spectroscopy," Mrs Bulletin, vol. 30, pp. 368-375, May 2005.

[6] J. van de Groep, P. Spinelli, and A. Polman, "Transparent conducting silver nanowire networks," Nano Lett., vol. 12, pp. 3138-3144, Jun 13 2012.

[7] Sukanta De, Thomas M. Higgins, Philip E. Lyons, Evelyn M. Doherty, Peter N. Nirmalraj, Werner J. Blau, et al., "Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios," ACS Nano, vol. 3, pp. 1767-1774, Jun 24 2009.

[8] L. B. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes," Acs Nano, vol. 4, pp. 2955-2963, May 2010.

[9] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, Apr 6 2001.

[10] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, vol. 305, pp. 788-92, Aug 6 2004.

[11] C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, "Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance," Optics Express, vol. 17, 2009.

[12] I. Utke, A. Luisier, P. Hoffmann, D. Laub, and P. A. Buffat, "Focused-electron-beam-induced deposition of freestanding three-dimensional nanostructures of pure coalesced copper crystals," Appl. Phys. Lett., vol. 81, pp. 3245-3247, 2002.

[13] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Y. Tver'yanovich, D. Kim, et al., "CuCl2-based liquid electrolyte precursor for laser-induced metal deposition," Laser Phys. Lett., vol. 4, pp. 242-246, 2007.

[14] E. U. Donev and J. T. Hastings, "Electron-beam-induced deposition of platinum from a liquid precursor," Nano Lett., vol. 9, pp. 2715-2718, 2009.

[15] T. J. Woehl, K. L. Jungjohann, J. E. Evans, I. Arslan, W. D. Ristenpart, and N. D. Browning, "Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials," Ultramicroscopy, vol. 127, pp. 53-63, Apr 2013.

[16] J. M. Grogan, N. M. Schneider, F. M. Ross, and H. H. Bau, "Bubble and pattern formation in liquid induced by an electron beam," Nano Lett., vol. 14, pp. 359-364, Jan 8 2014.

[17] "Wikipedia, http://en.wikipedia.org/wiki/Radiolysis."
[18] M. J. Williamson, R. M. Tromp, P. M. Vereecken, R. Hull, and F. M. Ross, "Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface," Nature Mater., vol. 2, pp. 532-6, Aug 2003.

[19] N. d. Jonge and F. M. Ross, "Electron microscopy of specimens in liquid," Nature Nanotech., vol. 6, pp. 695-704, 2011.

[20] J. M. Grogan and H. H. Bau, "The nanoaquarium a platform for in situ transmission electron microscopy in liquid media," J. Microelectromech. Syst., vol. 19, pp. 885-894, Aug 2010.

[21] G. Schardein, E. U. Donev, and J. T. Hastings, "Electron-beam-induced deposition of gold from aqueous solutions," Nanotechnology, vol. 22, p. 015301, Jan 7 2011.

[22] Y. Liu, X. Chen, K. W. Noh, and S. J. Dillon, "Electron beam induced deposition of silicon nanostructures from a liquid phase precursor," Nanotechnology, vol. 23, p. 385302, Sep 28 2012.

[23] L. E. Ocola, A. Joshi-Imre, C. Kessel, B. Chen, J. Park, D. Gosztola, et al., "Growth characterization of electron-beam-induced silver deposition from liquid precursor," J. Vac. Sci. Technol. B, vol. 30, p. 06FF08, 2012.

[24] H. Xiao, "Introduction to Semiconductor Manufacturing Technology," 2001.

[25] "Wikipedia, http://en.wikipedia.org/wiki/Focused_ion_beam."

[26] N. A. Roberts, G. A. Magel, C. D. Hartfield, T. M. Moore, J. D. Fowlkes, and P. D. Rack, "In situ laser processing in a scanning electron microscope," J. Vac. Sci. Technol. A, vol. 30, p. 041404, 2012.

[27] K. L. Liu, "thesis, National Tsing-Hua University," 2010.

[28] K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, P. Chang, et al., "Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions," Lab Chip, vol. 8, pp. 1915-1921, Nov 2008.

[29] L. A. Tai, Y. T. Kang, Y. C. Chen, Y. C. Wang, Y. J. Wang, Y. T. Wu, et al., "Quantitative characterization of nanoparticles in blood by transmission electron microscopy with a window-type microchip nanopipet," Anal. Chem., vol. 84, pp. 6312-6316, Aug 7 2012.

[30] A. Sousa, A. Aitouchen, and M. Libera, "Water mapping in hydrated soft materials," Ultramicroscopy, vol. 106, pp. 130-45, Jan 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *