帳號:guest(3.16.137.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳懷望
論文名稱(中文):添加銅、銀之200系不鏽鋼之抗菌應用暨合金設計
論文名稱(外文):Designing Cu and Ag bearing 200 series stainless steels for antibacterial applications
指導教授(中文):葉安洲
口試委員(中文):黃金川
王尚智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031504
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:91
中文關鍵詞:合金設計不鏽鋼共析出相
相關次數:
  • 推薦推薦:0
  • 點閱點閱:557
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
先進的 200 系列不鏽鋼的合金設計以添加銅銀為主,其目的為增加抗菌性質
來提升 200 系不鏽鋼的競爭力。因為兩者添加的銅和銀在以鐵為主的基底相中的溶解度很低,而會在基底析出富銅和富銀相的微觀結構,此兩相具有顯著的抗菌能力; 富銅+富銀相的總面積比及富銅/富銀的比例可以通過時效熱處理來控制。
令人感興趣的是,用較高的銅/銀組成比,於設計的數組合金中,其中一組銅銀比已經顯示出富銅和富銀相共同組成的共析出物,而非是單獨析出的富銅和富銀相; 而且在這個類的合金中,此種共析出物是首次被發現。由於富銀相的固溶溫度比富銅相來的高,故此富銅相的分佈情形可以通過富銀相的析出成核成長的位置來控制。所以我們的研究會以該合金的共析出機制、共析出的微觀結構與不同溫度下的變化情形為主要焦點;敝研究的實驗包括: 熱處理的研究、腐蝕試驗、抗菌的評測。研究結果表明,經此設計後的合金性能相較於商業合金具有相當的耐蝕性和抗菌性能。
致 謝 I
Abstract III
摘 要 IV
Content V
List of Figure VIII
List of Table XIII
I Introduction 1
II Literature review 3
2.1 Basic Introduction of 200 Series Low-Nickel Stainless Steel 4
2.2 The background of 200 series stainless steel, 204Cu grades 8
2.2.1 The mechanical property of 200series stainless steel 9
2.2.2 The corrosion resistance of 200series stainless steel 10
2.3 Antibacterial mechanism of precipitates enriched in copper and silver 13
2.3.1 The solubility of copper and silver in stainless steel 13
2.3.2 The morphology of epsilon-Cu phase and silver-enriched phase 14
2.3.3 The antibacterial heat treatment 17
2.3.4 The antibacterial property of copper and silver 17
2.4 Corrosion mechanism of copper and silver bearing stainless steel 21
2.4.1 The influencing factors of pitting corrosion 21
2.4.2 The two main mechanisms of pitting corrosion 22
III Experiments 25
3.1 Alloy design 26
3.1.1 The addition of Copper element 28
3.1.2 The addition of Silver element 28
3.1.3 The addition of Manganese element 29
3.1.4 The addition of Silicon element 30
3.2 Differential scanning calorimetry (DSC) analysis 31
3.3 Solution heat treatment (SHT) 32
3.4 Aging process (antibacterial phases precipitated process) 34
3.5 Hot rolling process 34
3.6 Antibacterial test 35
3.7 Corrosion test 36
3.7.1 Linear sweep voltammetry test 37
3.7.2 Immersed weight loss test 37
3.8 Material Analysis 38
3.8.1 X-ray diffractometer 38
3.8.2 Optical metallography 39
3.8.3 Scanning electron microscopy 39
3.8.4 Transmission Electron Microscope 40
IV Results and discussion 41
4.1 Microstructure Analysis 41
4.2 Solution heat treatment 46
4.2.1 DSC analysis 46
4.2.2 Microstructure analysis 47
4.2.3 XRD result 50
4.3 Precipitation treatment for antibacterial performance 52
4.3.1 Microstructure analysis 52
4.3.2 XRD result 55
4.4 Microstructures after hot rolling processes 56
4.4.1 Microstructure analysis 56
4.4.2 XRD result 63
4.5 Antibacterial test 64
4.6 Corrosion test 67
4.6.1 Linear sweep voltammetry test 67
4.6.2 Immersed weight loss test 70
4.7 Discussion 76
4.7.1 The formation of co-precipitates 76
4.7.2 Antibacterial factors 79
4.7.3 Galvanic effect of co-precipitates 81
V Conclusion 84
VI Future work 85
VII References 86

1. Hong, I.T. and C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 393(1-2): p. 213-222.
2. Ujiro, T., et al., Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corrosion Science, 2001. 43(11): p. 2185-2200.
3. Chiang, W.-C., et al., Influence of silver additions to type 316 stainless steels on bacterial inhibition,mechanical properties, and corrosion resistance. Materials Chemistry and Physics, 2010. 119: p. 123-130.
4. Junping, Y. and L. Wei, Antibacterial 316L Stainless Steel Containing Silver and Niobium. Rare Metal Materials and Engineering, 2013. 42(10): p. 2004-2008.
5. Chen, R.S., et al., A preliminary study on antibacterial mechanisms of silver ions implanted stainless steel. Vacuum, 2013. 89: p. 249-253.
6. Ren, L., et al., Preliminary study of anti-infective function of a copper-bearing stainless steel. Materials Science and Engineering: C, 2012. 32(5): p. 1204-1209.
7. BULLETIN, A.T., 200 series stainless steel CrMn grades. 2006.
8. Smith, W.F., Structure and properties of engineering alloys. second ed. 1993.
9. ASSOCIATION, B.S.S. 200 Series Stainless Steels an overview. STAINLESS STEEL INDUSTRY 2006; Available from: http://www.bssa.org.uk/cms/File/200seriesbssa.pdf.
10. 林坤毅, 楊., 邱德威,葉安洲,黃金川,, 銅合金之抗菌性能研究, in MRS-T Annual Conference. 2010: I-Shou University.
11. Fajardo, S., et al., Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Construction and Building Materials, 2011. 25(11): p. 4190-4196.
12. Freire, L., et al., On the corrosion mechanism of AISI 204Cu stainless steel in chlorinated alkaline media. Corrosion Science, 2008. 50(11): p. 3205-3212.
13. Merello, R., et al., Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels. Corrosion Science, 2003. 45(5): p. 909-921.
14. Bergey, D.H.J.G.H.N.R.K.P.H.A.S., Bergey's Manual of Determinative Bacteriology. 1994.
15. H. Abo, et al., Boshoku Gijutsu, 1974. 23: p. 303.
16. H. Ohashi, T. Adachi, and K. Maekita, Tetsu to Hagane, 1980. 66: p. S1309.
17. Smith, W.F. Structure and properties of engineering alloys. 1993.
18. Joanna Michalska and M. Sozańska, Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel. Materials Characterization, 2006. 56: p. 355-362.
19. ASSOCIATION, B.S.S. Duplex Stainless Steels - A Simplified Guide. Available from: http://www.bssa.org.uk/.
20. Smith, W.F., Structure and properties of engineering alloys. 1993. p. 312.
21. JR, D., ASM specialty handbook: stainless steels. 1994, Ohio (USA): ASM International.
22. Ahlblom B and R. Sandström, Hot workability of stainless steels: influence of deformation parameters, microstructural components, and restoration processes. International Metals Reviews, 1982.
23. Myllykoski L and S. N, Effect of solidification mode on hot ductility of austenitic stainless steels. Metals Technology, 1983. 10: p. 453-460.
24. Czerwinski F, et al., The edge-cracking of AISI 304 stainless steel during hot-rolling. Materials Science & Technology, 1999: p. 4727-4735.
25. M. Coetzee* and P.G.H. Pistorius*, The welding of experimental low-nickel
Cr- Mn- N stainless steels containing copper. The South African Institute of Mining and Metallurgy, 1996: p. 99-108.
26. Espy, R.H., Weldability of nitrogen-strengthened stainless steels. Weld. I, 1982. 61: p. 149-156.
27. N.Suutala, T.Takalo, and T.Moisio, The Relationship Between Solidification and Microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds. METALLURGICAL TRANSACTIONS A, 1979. 10A: p. 512-514.
28. Folkhard, E., Welding metallurgy if stainless steels. Vienna, Springer-Verlag, 1984: p. 158-159.
29. David, S.A., G.M. Goodwin, and D.N. Braskl, Solidification behaviour of austenitic stainless steel filler metals. Weld. J., 1979. 58: p. 330-336.
30. N.Suutala, T.Takalo, and T.Moisio, METALLURGICAL TRANSACTIONS A, 1976. 7A: p. 1591-1592.
31. Pistorius, P.C. and M.d. Toit, LOW-NICKEL AUSTENITIC STAINLESS STEELS: METALLURGICAL CONSTRAINTS in The Twelfth International Ferroalloys Congress. 2010. p. 911-918.
32. Plaut, R.L., et al., A Short Review on Wrought Austenitic Stainless Steels at High Temperatures: Processing, Microstructure, Properties and Performance. Materials Research, 2007. 10: p. 453-460.
33. Bain, E.C., Alloying Elements in Steels. ASM, 1939.
34. New 200-series steels: An opportunity or a threat to the image of stainless steel? International Stainless Steel Forum(ISSF), 2005: p. 3.
35. Austenitic Chromium-Manganese Stainless Steels – A European Approach. Materials and Applications Series. 12: p. 3,4.
36. Magee, J., DEVELOPMENT OF TYPE 204 CU STAINLESS, A LOW-COST ALTERNATE TO TYPE 304. Carpenter Technical Articles 2013.
37. Stainless Steel Grade J 204Cu J.S. Limited, Editor.
38. Smith, W.F., ed. Structure and properties of engineering alloys. second ed. 1993. 141.
39. A. DI SCHINO, et al., Development of high nitrogen, low nickel, 18%Cr austenitic stainless steels. Materials Science & Technology, 2000. 35: p. 4803– 4808.
40. Simmons, J.W., Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni austenitic stainless steels. Acta Materialia, 1997. 45(6): p. 2467-2475.
41. McGuire, M.F., Stainless steels for design engineers. Vol. chap. 1 and 6. 2008: ASM International.
42. Peckner.D and B. I.M., Handbook of stainless steels. Vol. Chap. 4, 11 and 12. 1977: McGraw-Hill.
43. Simmons, J.W., Overview: High-nitrogen alloying of stainless steels. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1996. 207(2): p. 159-169.
44. Gharehbaghi, A., Precipitation Study in a High Temperature Austenitic Stainless Steel using Low Voltage Energy Dispersive X-ray Spectroscopy. March 2012: KTH.
45. Peckner.D and B. I.M., Handbook of stainless steels. 1977, McGraw-Hill. p. 12-36, 20-32.
46. Carinci, G.M., et al., Low nickel, copper containing chromium-nickel-manganese-copper-nitrogen austenitic stainless steel. 1994.
47. Coetzee, M. and P.G.H. Pistorius, The welding of experimental low-nickel Cr-Mn-N stainless steels containing copper. the South African Institute of Mining and Metallurgy, 1996: p. 99-108.
48. Bautista, A., G. Blanco, and F. Velasco, Corrosion behaviour of low-nickel austenitic stainless steels reinforcements: A comparative study in simulated pore solutions. Cement and Concrete Research, 2006. 36(10): p. 1922-1930.
49. Alloy Phase Diagrams, in ASM Metals HandBook. ASM International.
50. Alloy Phase Diagrams, in ASM Metals HandBook. ASM International. p. 734.
51. Morrison, W.B., Influence of silver on structure and properties of low-carbon steel Materials Science and Technology, 1985. 1(11): p. 954-960.
52. Goodman, S.R., S.S. Brenner, and J.R. Low, Fim-Atom Probe Study of Precipitation of Copper from Iron-1.4 at Pct Copper .2. Atom Probe Analyses. Metallurgical Transactions, 1973. 4(10): p. 2371-2378.
53. Goodman, S.R., S.S. Brenner, and J.R. Low, Fim-Atom Probe Study of Precipitation of Copper from Iron-1.4 at Pct Copper .1. Field-Ion Microscopy. Metallurgical Transactions, 1973. 4(10): p. 2363-2369.
54. S. Pizzinia, et al., A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe-Cu and Fe-Cu-Ni alloys. Philosophical Magazine Letters, 1990. 61(4): p. 223-229.
55. Worrall, G.M., et al., A Study of the Precipitation of Copper Particles in a Ferrite Matrix. Journal of Nuclear Materials, 1987. 148(1): p. 107-114.
56. R.MONZEN, M.L.JENKINS, and A.P.SUTTO, The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. PHILOSOPHICAL MAGAZINE A, 2000. 80: p. 711-723.
57. GAGLIANO, M.S. and M.E. FINE, Characterization of the Nucleation and Growth Behavior of Copper Precipitates in Low-Carbon Steels. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2004. 35A: p. 2323.
58. xia, Z.Z., L. Gang, and X. Zhou, Precipitation behavior of antibacterial phase in copper-bearing ferrite antibacterial stainless steel. TRANSACTIONS OF MATERIALS AND HEAT TREATMENT, 2008. 29(5): p. 93-96.
59. CHEN Sihong, et al., Microstructure and antibacterial properties of cu-contained antibacterial stainless steel. Acta Metallurgica Sinica, 2004. 40: p. 314-318.
60. Liao, K.H., et al., Effect of silver on antibacterial properties of stainless steel. Applied Surface Science, 2010. 256(11): p. 3642-3646.
61. Golubovich VN and R. IL, Kinetics of growth inhibition in Candida utilis by silver ions. Microbiology, 1974. 43: p. 948-950.
62. GBerger TJ, et al., Antifungal properties of electrically genererated metallic ions. Antimicrob Agents Chemother, 1976. 10: p. 856-860.
63. Kourai, H., Inorganic Material, 1999. 6: p. 428.
64. M, Y., Grocery Mach., 1997. 11: p. 99.
65. G.P. Ellis and D.K. Luscombe, Progress in Medicinal Chemistry, 1994. 31: p. 351.
66. Friedman, M., The chemistry and biochemistry of the sulfhydryl group in amino acids, peptides, and proteins. 1973: Pergamon Press.
67. Takeshi Yokota, Misako Tochihara, and M. Ohta, Silver dispersed stainless steel with antibacterial property. Kawasaki Steel Technical Report, 2002. 46: p. 37-41.
68. Kourai, H., Inorganic Material, 1999. 6: p. 451.
69. Zhao, G. and J. S. Edward Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals, 1998. 11: p. 27-32.
70. Slawson, R.M., et al., Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 1992. 27(1): p. 72-79.
71. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
72. K.Y. Yoon, et al., Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers. Environ. Sci. Technol., 2008. 42: p. 1251-1255.
73. Dan, Z.G., et al., Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions. Thin Solid Films, 2005. 492(1-2): p. 93-100.
74. Mehtar, S., I. Wiid, and S.D. Todorov, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. Journal of Hospital Infection, 2008. 68(1): p. 45-51.
75. Castro, P. and M. Huber, Marine Biology. 9th ed. 2009: McGraw-Hill Companies.
76. Schmutz, D.P., Galvanic corrosion in Surfaces, Interfaces, and their Applications II 2013.
77. Schmutz, D.P., Pitting corrosion in Surfaces, Interfaces, and their Applications II 2013.
78. Corrosion. ASM Metals HandBook. Vol. 12. ASM International.
79. Ma, F.-Y., Corrosive Effects of Chlorides on Metals. Pitting Corrosio. 2012.
80. Speidel, M.O., Nitrogen Containing Austenitic Stainless Steels. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. 37: p. 875-880.
81. OSOZAWA, K. and N. OKATA, Passivityand its breakdownin ironand iron-base alloys. 1976.
82. Morrison, W.B., Influence of silver on structure and properties of low-carbon steel Materials Science and Technology, 1985. 01(11): p. 954-960.
83. Chiang, W.-C., et al., Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance. Materials Chemistry and Physics, 2010. 119(1–2): p. 123-130.
84. Toor, I.-u.-H., K.J. Park, and H. Kwon, Manganese Effects on Repassivation Kinetics and SCC Susceptibility of High Mn–N Austenitic Stainless Steel Alloys. The Electrochemical Society, 2007: p. C494-C499.
85. Lowell, C., Cyclic and isothermal oxidation behavior on some Ni-Cr alloys. Oxidation of Metals, 1973. 7(2): p. 95-115.
86. Kumar, A. and D.L. Douglass, Modification of the oxidation behavior of high-purity austenitic Fe-14Cr-14Ni by the addition of silicon. Oxidation of Metals, 1976. 10(1): p. 1-22.
87. Evans, H.E., et al., Influence of silicon additions on the oxidation resistance of a stainless steel. Oxidation of Metals, 1983. 19(1-2): p. 1-18.
88. Bard, A.J., R. Parsons;, and J. Jordan, Standard potentials in aqueous solution. 1985: New York.
89. Vanýsek, P., Electrochemical Series. 93rd ed. Handbook of Chemistry and Physics, ed. Haynes and W. M. 2012: Chemical Rubber Company.
90. Kotaś, J. and Z. Stasicka, Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 2000. 107: p. 263-283.
91. Iron E-pH (Pourbaix) Diagram. Available from: http://www.corrosion-doctors.org/Corrosion-Thermodynamics/Potential-pH-diagram-iron.htm.
92. Whittemore, D.O. and D. Langmuir, Standard electrode potential of Fe3+ + e- = Fe2+ from 5-35.deg. Journal of Chemical & Engineering Data, 1972. 17(3): p. 288-290.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *