|
[1] 林安熙, 高工空中教學金屬材料學(全): 中華出版社, 1972. [2] ASM Metals Hand Book Volume 03- Alloys Phase Diagrams vol. 3: ASM International, 1992. [3] 吳裕慶, 金屬材料學: 大中國圖書公司, 1982. [4] 劉火欽, 金屬材料: 三民書局, 1991. [5] 賴耿陽, 模具製造技術. 台南市: 復漢出版社, 2001. [6] C. W. Tsai, M. H. Tsai, J. W. Yeh, and C. C. Yang, "Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy," Journal of Alloys and Compounds, vol. 490, pp. 160-165, Feb 2010. [7] 呂思賢, "高硬度無鈹之銅合金開發研究," 國立清華大學材料科學工程研究所碩士論文, 2010. [8] 劉舒佩, "無鈹高性能銅合金之開發," 國立清華大學材料科學工程研究所碩士論文, 2012. [9] 呂璞石、黃振賢, 金屬材料(增訂版). 台北市: 文京圖書有限公司, 1986. [10] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed. Singapore: McGraw-Hill, Inc., 1993. [11] ASM Metals Hand Book Volume 02-Nonferrous Alloys and Special-Purpose Materials. vol. 2, ASM International, 1992, p. 1307. [12] V. A. Phillips and L. E. Tanner, "High resolution electron microscope observations on G.P. zones in an aged Cu-1.97wt.% Be crystal," Acta Metallurgica, vol. 21, pp. 441-448, Apr 1973. [13] L. Yagmur, O. Duygulu, and B. Aydemir, "Investigation of metastable gamma ' precipitate using HRTEM in aged Cu-Be alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 4147-4151, May 15 2011. [14] B. Djuric, M. Jovanovic, and D. Drobnjak, "A Study of Precipitation in Cu-Be Alloys," Metallography, vol. 13, pp. 235-247, 1980. [15] ASM Metals Hand Book Volume 02- Properties & Selection: Non-Ferrous alloys and Special Purpose Materials, 10th ed.: ASM International, 1990. [16] J. D. Verhoeven, H. L. Downing, L. S. Chumbley, and E. D. Gibson, "The resistivity and microstructure of heavily drawn Cu-Nb alloys," Journal of Applied Physics, vol. 65, pp. 1293-1301, Feb 1989. [17] Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda, "Development of high strength, high conductivity Cu-Ag alloys for high-field pulsed magnet use," Applied Physics Letters, vol. 59, pp. 2965-2967, Dec 1991. [18] S. I. Hong and M. A. Hill, "Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 264, pp. 151-158, May 1999. [19] S. I. Hong, M. A. Hill, Y. Sakai, J. T. Wood, and J. D. Embury, "On the stability of cold drawn, two-phase wires," Acta Metallurgica Et Materialia, vol. 43, pp. 3313-3323, Sep 1995. [20] J. G. Lei, P. Liu, X. T. Jing, D. M. Zhao, and J. L. Huang, "Aging kinetics in a CuNiSiCr alloy," Journal of Materials Science & Technology, vol. 20, pp. 727-730, Nov 2004. [21] Z. Li, Z. Y. Pan, Y. Y. Zhao, Z. Xiao, and M. P. Wang, "Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy," Journal of Materials Research, vol. 24, pp. 2123-2129, Jun 2009. [22] S. C. Krishna, J. Srinath, A. K. Jha, B. Pant, S. C. Sharma, and K. M. George, "Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy," Journal of Materials Engineering and Performance, vol. 22, pp. 2115-2120, Jul 2013. [23] Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J. M. Xie, et al., "Effect of aluminum on microstructure and property of Cu-Ni-Si alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 572, pp. 65-74, Jun 2013. [24] E. Donoso, R. Espinoza, M. J. Dianez, and J. M. Criado, "Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 556, pp. 612-616, Oct 2012. [25] Q. Lei, Z. Li, A. Y. Zhu, W. T. Qiu, and S. Q. Liang, "The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment," Materials Characterization, vol. 62, pp. 904-911, Sep 2011. [26] Q. Lei, Z. Li, M. P. Wang, L. Zhang, Z. Xiao, and Y. L. Jia, "The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 6728-6733, Sep 2010. [27] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, "Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling," Journal of Alloys and Compounds, vol. 417, pp. 116-120, Jun 2006. [28] 第一伸銅科技股份有限公司, http://www.fcht.com.tw/cmainpage.htm. [29] H. Kimura, A. Inoue, N. Muramatsu, K. Shin, and T. Yamamoto, "Ultrahigh strength and high electrical conductivity characteristics of Cu-Zr alloy wires with nanoscale duplex fibrous structure," Materials Transactions, vol. 47, pp. 1595-1598, Jun 2006. [30] H. Kimura, H. Matsumoto, and A. Inoue, "Effect of cold drawing on electrical and mechanical properties of Cu-5 at% Zr alloy," Materials Transactions, vol. 48, pp. 2674-2678, Oct 2007. [31] H. Miura, N. Nishiyama, N. Togashi, M. Nishida, and A. Inoue, "Structure, conductivity and mechanical properties of non-equilibrium copper-based crystalline alloy nano-composites," Intermetallics, vol. 18, pp. 1860-1863, Oct 2010. [32] H. Miura, N. Nishiyama, and A. Inoue, "Non-equilibrium copper-based crystalline alloy sheet having ultrahigh strength and good electrical conductivity," Journal of Alloys and Compounds, vol. 509, pp. S361-S363, Jun 2011. [33] S. Nagarjuna, K. Sharma, I. Sudhakar, and D. S. Sarma, "Age hardening studies in a Cu-4.5Ti-0.5Co alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 313, pp. 251-260, Aug 2001. [34] S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, and Y. Waseda, "Electrical and thermal conductivities in quenched and aged high-purity Cu-Ti alloys," Scripta Materialia, vol. 48, pp. 431-435, Feb 2003. [35] W. A. Soffa and D. E. Laughlin, "High-strength age hardening copper-titanium alloys: redivivus," Progress in Materials Science, vol. 49, pp. 347-366, 2004. [36] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys," Journal of Materials Science, vol. 34, pp. 2929-2942, Jun 1999. [37] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of Ti additions on the electrical resistivity of copper," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 225, pp. 118-124, Apr 1997. [38] R. Markandeya, S. Nagarjuna, and D. S. Sarma, "Precipitation hardening of Cu-Ti-Cr alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 371, pp. 291-305, Apr 2004. [39] R. Markandeya, S. Nagarjuna, and D. S. Sarma, "Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy," Materials Characterization, vol. 57, pp. 348-357, 2006. [40] I. S. Batra, A. Laik, G. B. Kale, G. K. Dey, and U. D. Kulkarni, "Microstructure and properties of a Cu-Ti-Co alloy," Materials Science Engineering A-Structure Materials Properties Microstructure and Processing, vol. 402, pp. 118-125, 2005. [41] ASM Metals Hand Book Volume 03- Alloys Phase Diagrams vol. 3: ASM International, 1992. [42] A. I. A. Takeuchi, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, pp. 2817-2829, 2005. [43] 聯東金屬有限公司, http://www.landon.com.tw/blog/rewrite.php/read-33.html. [44] X. P. Xiao, B. Q. Xiong, Q. S. Wang, G. L. Xie, L. J. Peng, and G. X. Huang, "Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments," Rare Metals, vol. 32, pp. 144-149, Apr 2013. [45] G. J. Butterworth and C. B. A. Forty, "A survey of the properties of copper-alloys for use as fusion reactor materials," Journal of Nuclear Materials, vol. 189, pp. 237-276, Aug 1992. [46] C. Kittel, Introduction to Solid State Physics, 7 ed., 1996. [47] F. H. Stott, "The role of oxidation in the wear of alloys," Tribology International, vol. 31, pp. 61-71, Jan-Mar 1998. [48] 黃銘鶴, "Al0.2Co1.5CrFeNb0.1Ni1.5TiV0.1高熵合金磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2009. [49] N. P. Suh, "The delamination theory of wear," Wear, vol. 25, pp. 111-124, 1973. [50] Y. Wang, T. Q. Lei, and J. J. Liu, "Tribo-metallographic behavior of high carbon steels in dry sliding I. Wear mechanisms and their transition," Wear, vol. 231, pp. 1-11, Jun 1999. [51] A. Vencl, V. Rajkovic, F. Zivic, S. Mitrovic, I. Cvijovic-Alagic, and M. T. Jovanovic, "The effect of processing techniques on microstructural and tribological properties of copper-based alloys," Applied Surface Science, vol. 280, pp. 646-654, Sep 2013. [52] 吳浚民, "AlxCoCrCuFeNiTiY 高熵合金黏著磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2004. [53] 安博科公司, AMPCO METAL
|