帳號:guest(13.58.72.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱文芳
作者(外文):CHIU, WEN-FANG
論文名稱(中文):取代Cu-Be合金之無鈹銅合金開發
論文名稱(外文):Development of Be-free Copper Alloys for Substituting Cu-Be Alloys
指導教授(中文):葉均蔚
指導教授(外文):YEH, JIEN WEI
口試委員(中文):葉均蔚
葉安洲
李勝隆
洪健龍
口試委員(外文):YEH, JIEN WEI
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:101031502
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:243
中文關鍵詞:銅鈹合金時效硬化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:996
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室開發的Cu75Sn2多元合金於400~450°C時效時產生顯著的時效硬化,可達HV 328,歸因於富銅基地相中析出富NiAl之BCC固溶相,但導電率並不高,仍難與Cu-Be合金的導電性競爭。根據文獻,在眾多銅合金系統中Cu-Ni-Si合金可同時具備良好的硬度及導電率,相當具有發展的潛力。因此本論文為增強合金析出硬化並同時提升導電率,故結合NiAl、Ni2Si及Ni3Si多種析出物強化的概念開發Cu-Al-Ni-Si合金,並在合金中添加低固溶度的合金元素,如Ti、V及Zr等,以獲得兼具高硬度及導電率的無鈹銅合金。實驗除觀察合金組成及冷滾軋對微結構、時效曲線及導電率影響外,並對滾軋態合金拉伸、耐溫、熱傳導、熱膨脹及室溫磨耗等性質進行研究,以評估新開發合金之應用性及取代傳統銅鈹合金的可行性。
在Cu92合金系列中,針對Al、Ni及Si變量對合金硬度及導電率表現進行研究,其中C92Ni5Zr0.5合金時效硬化效果顯著,其尖峰時效硬度為HV 243,導電率為28.9 %IACS。經冷加工後時效處理,此合金硬度可達到HV 264,但導電率仍可維持在27.1 %IACS。Cu84合金系列中,C84Ni10Zr1合金經冷加工及時效具有最佳之綜合表現,硬度為HV 313,導電率為20.9 %IACS。經TEM分析,此合金於富銅基地相中析出Ni、Si為主的奈米析出物,產生顯著的析出。Cu88合金系列中,將低固溶度的合金元素微量多元添加至合金中,可使硬度接近Cu84合金系列,同時導電率也可達到Cu92合金系列水準,其尖峰時效硬度為HV 290,導電率為26.5 %IACS。
應用性質方面,新開發的合金系列相較於商用銅鈹合金具有較好的耐溫性,經450°C 50小時仍未現時效軟化,而銅鈹合金經400°C 1小時即會出現明顯的過時效軟化。而Cu84Sn1及Cu84V1合金經冷加工後於400°C時效100小時仍維持優於銅鈹合金之硬度,具有良好的抗高溫軟化能力。此外新開發合金也多具備優異的抗磨耗性質及較低的摩擦係數,同時各合金熱膨脹係數皆小於傳統銅鈹合金。整體而言,本研究所開發的九組銅合金於應用方面皆各具競爭優勢,其中有幾組合金的硬度及導電率可取代硬度低於HV 300的Cu-Be合金。
致 謝 i
摘 要 I
目 錄 III
圖目錄 VIII
表目錄 XXI
第一章、前言 1
第二章、文獻回顧 3
2.1純銅基本性質 3
2.2銅合金之用途 4
2.3銅合金之種類[1, 3, 4, 9] 4
2.3.1黃銅 5
2.3.2青銅 8
2.4高硬度高導電率之銅合金發展 12
2.4.1銅鈹合金 12
2.4.2高導電率銅銀、銅鈮合金[16-19] 19
2.4.3銅鎳矽合金[20-28] 23
2.4.4銅鋯合金[29-32] 31
2.4.5銅鈦合金[33-40] 36
2.4.6本研究之背景與目的[6-8] 42
第三章、實驗方法 45
3.1實驗步驟 45
3.2合金設計 46
3.2.1等莫耳Al,Ni,Si,Zr添加之合金系列-Cu92Al2Ni2Si2Zr2、Cu84Al4Ni4Si4Zr4 47
3.2.2減Zr之Cu92合金系列-Cu92Al3.5Ni2Si2Zr0.5、Cu92Al2Ni3.5Si2Zr0.5、Cu92Al2Ni2Si3.5Zr0.5 47
3.2.3 Cu84合金系列-Cu84Al3Ni9Si3Zr1、Cu84Al3Ni9Si3Sn1、Cu84Al3Ni9Si3Ti1、Cu84Al3Ni9Si3V1 48
3.2.4合金改良-Cu92Al0.75Ni5Si1.75Zr0.5、Cu84Al1.5Ni10Si3.5Zr1 48
3.2.5多元微量添加合金-Cu88Al1Ni7.5Si2.5Cr0.5Ti0.1V0.3Zr0.1、Cu89Al1Ni7.5Si2.5 49
3.3真空電弧熔煉 51
3.4均質化處理 51
3.5時效處理 51
3.6滾軋 52
3.7微結構觀察 52
3.7.1 X-ray結晶繞射分析 (XRD) 52
3.7.2光學顯微鏡 (OM) 52
3.7.3掃描式電子顯微鏡 (SEM) 53
3.7.4穿透式電子顯微鏡 (TEM) 53
3.8機械性質量測 54
3.8.1硬度量測 54
3.8.2拉伸試驗 54
3.8.3室溫黏著磨耗試驗 55
3.9室溫電阻量測 58
3.10熱傳導係數量測 60
3.11熱膨脹係數量測 63
第四章、結果與討論 65
4.1 等莫耳Al, Ni, Si, Zr添加之合金微結構及時效曲線 65
4.1.1 Cu92Al2Ni2Si2Zr2 (Cu92合金) 65
4.1.2 Cu84Al4Ni4Si4Zr4 (Cu84合金) 70
4.1.3 探討Cu92及Cu84時效曲線與微結構關聯 74
4.2 減Zr合金微結構及時效曲線-Cu92系列 75
4.2.1 Cu92Al3.5Ni2Si2Zr0.5 (Cu92Al3.5合金) 75
4.2.2 Cu92Al2Ni3.5Si2Zr0.5 (Cu92Ni3.5合金) 80
4.2.3 Cu92Al2Ni2Si3.5Zr0.5 (Cu92Si3.5合金) 85
4.2.4 減鋯Cu92系列合金時效硬化之原因 90
4.3 Cu84系列合金 93
4.3.1 Cu84Al3Ni9Si3Zr1 (Cu84Zr1合金) 93
4.3.2 Cu84Al3Ni9Si3Sn1 (Cu84Sn1合金) 99
4.3.3 Cu84Al3Ni9Si3Ti1 (Cu84Ti1合金) 104
4.3.4 Cu84Al3Ni9Si3V1 (Cu84V1合金) 109
4.3.5 Cu84系列合金時效硬化與微結構比較 114
4.4 合金改良 120
4.4.1 Cu92Al0.75Ni5Si1.75Zr0.5 (Cu92Ni5Zr0.5合金) 120
4.4.2 Cu84Al1.5Ni10Si3.5Zr1 (Cu84Ni10Zr1合金) 126
4.4.2.1 Cu84Al1.5Ni10Si3.5Zr1 TEM分析 132
4.4.3 合金改良的成效與原因 142
4.5 多元微量添加 144
4.5.1 Cu88Al1Ni7.5Si2.5Cr0.5Ti0.1V0.3Zr0.1 (Cu88CrTiVZr合金) 144
4.5.2 Cu89Al1Ni7.5Si2.5 (Cu89合金) 151
4.5.3 微量多元添加的成效 156
4.6 銅合金室溫導電率 158
4.7 冷滾軋對合金性質影響 163
4.7.1 冷滾軋對合金微結構及硬度影響 163
4.7.2 冷滾軋對合金導電率影響 170
4.7.3 熱機處理與再結晶 172
4.8 拉伸測試 177
4.8.1 冷滾軋合金之室溫拉伸 177
4.8.2 熱處理條件對拉伸性質影響 186
4.9 銅合金物理性質與C17200應用性質比較 190
4.9.1 耐溫性 190
4.9.2 熱傳導與密度 192
4.9.3 熱膨脹係數 197
4.9.4 室溫抗磨耗性質 198
4.9.4.1 磨耗面及磨屑分析 198
4.9.4.2 摩擦係數及黏著磨耗阻抗 220
4.10 合金應用潛力 230
第五章、結論 232
第六章、本研究貢獻 236
第七章、建議未來研究方向 237
第八章、參考文獻 238
[1] 林安熙, 高工空中教學金屬材料學(全): 中華出版社, 1972.
[2] ASM Metals Hand Book Volume 03- Alloys Phase Diagrams
vol. 3: ASM International, 1992.
[3] 吳裕慶, 金屬材料學: 大中國圖書公司, 1982.
[4] 劉火欽, 金屬材料: 三民書局, 1991.
[5] 賴耿陽, 模具製造技術. 台南市: 復漢出版社, 2001.
[6] C. W. Tsai, M. H. Tsai, J. W. Yeh, and C. C. Yang, "Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy," Journal of Alloys and Compounds, vol. 490, pp. 160-165, Feb 2010.
[7] 呂思賢, "高硬度無鈹之銅合金開發研究," 國立清華大學材料科學工程研究所碩士論文, 2010.
[8] 劉舒佩, "無鈹高性能銅合金之開發," 國立清華大學材料科學工程研究所碩士論文, 2012.
[9] 呂璞石、黃振賢, 金屬材料(增訂版). 台北市: 文京圖書有限公司, 1986.
[10] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed. Singapore: McGraw-Hill, Inc., 1993.
[11] ASM Metals Hand Book Volume 02-Nonferrous Alloys and Special-Purpose Materials. vol. 2, ASM International, 1992, p. 1307.
[12] V. A. Phillips and L. E. Tanner, "High resolution electron microscope observations on G.P. zones in an aged Cu-1.97wt.% Be crystal," Acta Metallurgica, vol. 21, pp. 441-448, Apr 1973.
[13] L. Yagmur, O. Duygulu, and B. Aydemir, "Investigation of metastable gamma ' precipitate using HRTEM in aged Cu-Be alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 4147-4151, May 15 2011.
[14] B. Djuric, M. Jovanovic, and D. Drobnjak, "A Study of Precipitation in Cu-Be Alloys," Metallography, vol. 13, pp. 235-247, 1980.
[15] ASM Metals Hand Book Volume 02- Properties & Selection: Non-Ferrous alloys and Special Purpose Materials, 10th ed.: ASM International, 1990.
[16] J. D. Verhoeven, H. L. Downing, L. S. Chumbley, and E. D. Gibson, "The resistivity and microstructure of heavily drawn Cu-Nb alloys," Journal of Applied Physics, vol. 65, pp. 1293-1301, Feb 1989.
[17] Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda, "Development of high strength, high conductivity Cu-Ag alloys for high-field pulsed magnet use," Applied Physics Letters, vol. 59, pp. 2965-2967, Dec 1991.
[18] S. I. Hong and M. A. Hill, "Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 264, pp. 151-158, May 1999.
[19] S. I. Hong, M. A. Hill, Y. Sakai, J. T. Wood, and J. D. Embury, "On the stability of cold drawn, two-phase wires," Acta Metallurgica Et Materialia, vol. 43, pp. 3313-3323, Sep 1995.
[20] J. G. Lei, P. Liu, X. T. Jing, D. M. Zhao, and J. L. Huang, "Aging kinetics in a CuNiSiCr alloy," Journal of Materials Science & Technology, vol. 20, pp. 727-730, Nov 2004.
[21] Z. Li, Z. Y. Pan, Y. Y. Zhao, Z. Xiao, and M. P. Wang, "Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy," Journal of Materials Research, vol. 24, pp. 2123-2129, Jun 2009.
[22] S. C. Krishna, J. Srinath, A. K. Jha, B. Pant, S. C. Sharma, and K. M. George, "Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy," Journal of Materials Engineering and Performance, vol. 22, pp. 2115-2120, Jul 2013.
[23] Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J. M. Xie, et al., "Effect of aluminum on microstructure and property of Cu-Ni-Si alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 572, pp. 65-74, Jun 2013.
[24] E. Donoso, R. Espinoza, M. J. Dianez, and J. M. Criado, "Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 556, pp. 612-616, Oct 2012.
[25] Q. Lei, Z. Li, A. Y. Zhu, W. T. Qiu, and S. Q. Liang, "The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment," Materials Characterization, vol. 62, pp. 904-911, Sep 2011.
[26] Q. Lei, Z. Li, M. P. Wang, L. Zhang, Z. Xiao, and Y. L. Jia, "The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 6728-6733, Sep 2010.
[27] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, "Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling," Journal of Alloys and Compounds, vol. 417, pp. 116-120, Jun 2006.
[28] 第一伸銅科技股份有限公司, http://www.fcht.com.tw/cmainpage.htm.
[29] H. Kimura, A. Inoue, N. Muramatsu, K. Shin, and T. Yamamoto, "Ultrahigh strength and high electrical conductivity characteristics of Cu-Zr alloy wires with nanoscale duplex fibrous structure," Materials Transactions, vol. 47, pp. 1595-1598, Jun 2006.
[30] H. Kimura, H. Matsumoto, and A. Inoue, "Effect of cold drawing on electrical and mechanical properties of Cu-5 at% Zr alloy," Materials Transactions, vol. 48, pp. 2674-2678, Oct 2007.
[31] H. Miura, N. Nishiyama, N. Togashi, M. Nishida, and A. Inoue, "Structure, conductivity and mechanical properties of non-equilibrium copper-based crystalline alloy nano-composites," Intermetallics, vol. 18, pp. 1860-1863, Oct 2010.
[32] H. Miura, N. Nishiyama, and A. Inoue, "Non-equilibrium copper-based crystalline alloy sheet having ultrahigh strength and good electrical conductivity," Journal of Alloys and Compounds, vol. 509, pp. S361-S363, Jun 2011.
[33] S. Nagarjuna, K. Sharma, I. Sudhakar, and D. S. Sarma, "Age hardening studies in a Cu-4.5Ti-0.5Co alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 313, pp. 251-260, Aug 2001.
[34] S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, and Y. Waseda, "Electrical and thermal conductivities in quenched and aged high-purity Cu-Ti alloys," Scripta Materialia, vol. 48, pp. 431-435, Feb 2003.
[35] W. A. Soffa and D. E. Laughlin, "High-strength age hardening copper-titanium alloys: redivivus," Progress in Materials Science, vol. 49, pp. 347-366, 2004.
[36] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys," Journal of Materials Science, vol. 34, pp. 2929-2942, Jun 1999.
[37] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of Ti additions on the electrical resistivity of copper," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 225, pp. 118-124, Apr 1997.
[38] R. Markandeya, S. Nagarjuna, and D. S. Sarma, "Precipitation hardening of Cu-Ti-Cr alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 371, pp. 291-305, Apr 2004.
[39] R. Markandeya, S. Nagarjuna, and D. S. Sarma, "Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy," Materials Characterization, vol. 57, pp. 348-357, 2006.
[40] I. S. Batra, A. Laik, G. B. Kale, G. K. Dey, and U. D. Kulkarni, "Microstructure and properties of a Cu-Ti-Co alloy," Materials Science Engineering A-Structure Materials Properties Microstructure and Processing, vol. 402, pp. 118-125, 2005.
[41] ASM Metals Hand Book Volume 03- Alloys Phase Diagrams vol. 3: ASM International, 1992.
[42] A. I. A. Takeuchi, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, pp. 2817-2829, 2005.
[43] 聯東金屬有限公司, http://www.landon.com.tw/blog/rewrite.php/read-33.html.
[44] X. P. Xiao, B. Q. Xiong, Q. S. Wang, G. L. Xie, L. J. Peng, and G. X. Huang, "Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments," Rare Metals, vol. 32, pp. 144-149, Apr 2013.
[45] G. J. Butterworth and C. B. A. Forty, "A survey of the properties of copper-alloys for use as fusion reactor materials," Journal of Nuclear Materials, vol. 189, pp. 237-276, Aug 1992.
[46] C. Kittel, Introduction to Solid State Physics, 7 ed., 1996.
[47] F. H. Stott, "The role of oxidation in the wear of alloys," Tribology International, vol. 31, pp. 61-71, Jan-Mar 1998.
[48] 黃銘鶴, "Al0.2Co1.5CrFeNb0.1Ni1.5TiV0.1高熵合金磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2009.
[49] N. P. Suh, "The delamination theory of wear," Wear, vol. 25, pp. 111-124, 1973.
[50] Y. Wang, T. Q. Lei, and J. J. Liu, "Tribo-metallographic behavior of high carbon steels in dry sliding I. Wear mechanisms and their transition," Wear, vol. 231, pp. 1-11, Jun 1999.
[51] A. Vencl, V. Rajkovic, F. Zivic, S. Mitrovic, I. Cvijovic-Alagic, and M. T. Jovanovic, "The effect of processing techniques on microstructural and tribological properties of copper-based alloys," Applied Surface Science, vol. 280, pp. 646-654, Sep 2013.
[52] 吳浚民, "AlxCoCrCuFeNiTiY 高熵合金黏著磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2004.
[53] 安博科公司, AMPCO METAL
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *