帳號:guest(18.226.226.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林信翰
作者(外文):Lin, Hsin-Han
論文名稱(中文):二硫化錫於可見光驅動光催化分解水產氫之研究
論文名稱(外文):Applications of Tin Disulfide in Visible-light Driven Photocatalytic Water Splitting for Hydrogen Production
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):吳紀聖
李岱洲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:101030603
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:分解水產氫可見光二硫化錫
外文關鍵詞:water splittinghydrogen productionvisible lighttin disulfide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:579
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
近年來在光催化分解水產氫的領域上有越來越多的研究團隊將研究重心放在可見光應答之材料上。目前可見光分解水產氫之領域以硫化鎘為主要被探討之光觸媒。雖然硫化鎘具備在可見光照射下之產氫能力,其穩定性及毒性使得該觸媒在使用上有其疑慮。而二硫化錫為一無毒性、便宜及化學穩定性高之n型半導體材料。其能隙為2.2 ~2.35 eV,為一可見光應答之材料。且文獻中提及之二硫化錫能帶結構符合光催化分解水之基本條件,為一可發展之材料。本研究希冀藉由對二硫化錫的結構及其在可見光分解水產氫的應用之了解,將此材料視為一未來有機會取代硫化鎘之可見光觸媒。
本研究中以五水合四氯化錫及硫代乙醯胺作為前驅物合成出大小為15至40奈米之奈米片,經XRD確認為二硫化錫。由TEM觀察其厚度約為十數層單層所組成之片狀結構。比表面積最高之樣品SnS2-160-12可達到105〖 m〗^2/g,為界孔洞材料。其能隙經過紫外-可見光吸收圖譜之檢測後判定為2.1 eV。本研究採用之光觸媒產氫之反應系統為內照式,並以400 W高壓汞燈照射,1M亞硝酸鈉作為濾光液,其中以硫化鈉與亞硫酸鈉作為犧牲試劑。經產氫測試結果二硫化錫之產氫速率為28 μmol/hr,為本研究合成之硫化鎘產氫速率之1.24倍。經過五個五小時之循環測試後,二硫化錫之產氫能力僅表現出些微之衰減。
本研究亦把硫化鎘奈米棒作為主體並以二硫化錫奈米粒子修飾於其上。由SEM及TEM皆可以看到有明顯的奈米粒子修飾於主體奈米棒上,並經由晶面間距及XPS分析確認該奈米粒子為二硫化錫。兩半導體材料複合後形成異質接面,其能帶結構匹配電子電洞將能夠有效地分離至兩材料,藉此減緩電子電洞對再結合,改善其產氫能力。而SnS2-20/CdS-160-12此一樣品之產氫速率可達43 μmol/hr,約為純硫化鎘產氫速率之1.9倍。
In the research area of photocatalytic water splitting for hydrogen production area, there are increasingly more and more research groups placputting their efforts on visible light driven materials. Cadmium sulfide is probably Up to now, the most thoroughly investigateddiscussed visible light driven photocatalystmaterial would be cadmium sulfide. Although cadmium sulfide does possess the ability to produce hydrogen under visible light irradiation, its instability and toxicity are majorstill our concerns. Tin disulfide is an n-type semiconductor which is non-toxic, inexpensive, and chemically stable. Tin disulfide is a visible light driven material since its band gap is onlyranges from 2.2~2.35 eV. According to literaturethe reference, its band structure is also suitable for hydrogen production, which makes ittin disulfide a promising alternative visible light driven photocatalyst to material that might replaces cadmium sulfide.
We use tin(IV) chloride pentahydrate and thioacetamide as theour precursors to synthesizes tin disulfide nanoplates with a hydrothermal process. The productwith platearticle sizes rangesing from 15 to 40 nm. XRD data confirms that they are all products obtained are tin disulfide. TEM images shows that the lamellar structure is composed of more than ten layers in the thickness direction. Tin disulfide obtained at a reaction temperature of 160 oC and reaction time of 12 hours, SnS2-160-12, is shown to be SnS2-160-12, a meso--porous with amaterial, possesses the highlargest specific surface area of which reaches 105.4657〖 m〗^2/g. The band gap, is 2.1 eV, which is determined by UV-visible absorption spectrumspectra, is 2.1 eV. TheOur photocatalytic reactor is with an designed to be inner illumination light source,ed a by 400 W high-pressure mercury lamp. A solution of In order to filter UV light, 1M NaNO2 is usedchosen to be the filter out all lights with wavelengths shorter than 420 nmsolution. Na2S and Na2SO3 serve as theare the sacrificial agents in our system. According to our the results, tin disulfide could produces hydrogen atwith the rate of 287.718 μmol/hr, which is 1.24 times of thate rate of cadmium sulfide.
In additionMoreover, we try to decorate cadmium sulfide nanorods are decorated with tin disulfide nanoparticles to form a heterojunction composite photocatalyst. It is evidentobvious to see from SEM and TEM images that tin disulfidethere are lots of nanoparticles are successfully decorated onto the surfaces of attached on the cadmium sulfide nanorods from the SEM and TEM. With the help of HR-TEM and XPS analyseis, we are certain that the nanoparticles are tin disulfide. These two semiconductor materials would formcreate a staggered heterojunction, enabling and their matching band structures makeimproved charge separation electron-hole pair well separated. Owing to this effect, electron-hole pair recombination isshould be retardedduced, which improvesmakes better the hydrogen production ability of the composite photocatalyst. Sample SnS2-20/CdS-160-12 could produces hydrogen atwith the rate of 432.609 μmol/hr, which is 1.9 times of thate rate of pure cadmium sulfide
摘要 I
Abstract II
致謝 IV
總目錄 V
圖目錄 VII
表目錄 X
第1章 緒論 1
1-1 前言 1
1-2 本多-藤島效應(Honda-Fujishima effect) 2
1-3 光催化分解水原理 3
1-4 電子電洞對之產生與再結合 5
1-4-1 犧牲試劑的作用 6
1-4-2 助觸媒的使用 7
1-4-3 不同能隙半導體異質接面 7
1-5 光催化分解水設備種類 8
1-6 研究動機 10
第2章 文獻回顧 11
2-1 可見光光觸媒用於光催化分解水產氫之發展 11
2-2 二硫化錫之性質及其應用 30
2-2-1 二硫化錫之結構與其性質 30
2-2-2 二硫化錫與其複合物於光降解之應用 37
第3章 實驗方法與儀器原理 50
3-1 實驗藥品 50
3-2 實驗器材 51
3-3 分析儀器 52
3-4 二硫化錫之製備 56
3-5 硫化鎘奈米棒之製備 56
3-6 二硫化錫與硫化鎘奈米棒複合物之製備 57
3-7 光催化分解水產氫儀器設置及分析 57
3-7-1 懸浮式光反應器 57
3-7-2 光源光譜之測定 58
第4章 結果與討論 60
4-1 二硫化錫光觸媒 60
4-1-1 光觸媒基本物性分析 60
4-1-2 光催化分解水產氫效率 66
4-2 二硫化錫與硫化鎘之複合光觸媒 69
4-2-1 光觸媒基本物性分析 69
4-2-2 光催化分解水產氫效率 79
第5章 結論 86
第6章 參考文獻 87
[1] 李敦鈁, 鄭菁, 陳新益, and 鄒志剛, "光催化分解水體系和材料研究," 化學進展, 19(4), 464-477, 2007.
[2] 曲新生, 陳發林, and 呂錫民, 產氫與儲氫技術, 五南圖書出版股份有限公司, 2007.
[3] 張嘉修, "生質氫能," 科學發展, 433, 32-35, 2009.
[4] K. H. Akira Fujishima, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238, 37-38, 1972.
[5] A. Galinska and J. Walendziewski, "Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacificial Reacgent," Energy Fuels, 19(3), 1143-1147, 2005.
[6] Y. Noda, B. Lee, K. Domen, and J. N. Kondo, "Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation," Chem. Mater., 20(16), 5361-5367, 2008.
[7] S. L. H. Andrew Mills, "An overview of semiconductor photocatalysis," J. Photochem. Photobiol., A, 108, 1-35, 1997.
[8] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem. Soc. Rev., 38, 253-78, 2009.
[9] M. Gratzel, "Photoelectrochemical cells," Nature, 414, 338-344, 2001.
[10] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J. M. Thomas, "Photocatalysis for new energy production," Catal. Today, 122, 51-61, 2007.
[11] A. Kudo, "Photocatalyst materials for water splitting," Catalysis Surveys from Asia, 7(1), 31-38, 2003.
[12] H. Lv, L. Ma, P. Zeng, D. Ke, and T. Peng, "Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light," J. Mater. Chem., 20, 3665-3672, 2010.
[13] C.-C. Lin, T.-Y. Wei, K.-T. Lee, and S.-Y. Lu, "Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting," J. Mater. Chem., 21, 12668-12674, 2011.
[14] Y. Jia, S. Shen, D. Wang, X. Wang, J. Shi, F. Zhang, H. Han, and C. Li, "Composite Sr2TiO4/SrTiO3(La,Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation," J. Mater. Chem. A, 1, 7905-7912, 2013.
[15] D. B. Ingram and S. Linic, "Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface," J. Am. Chem. Soc., 133, 5202-5205, 2011.
[16] P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, "Oxide Nanotubes on Ti−Ru Alloys: Strongly Enhanced and Stable Photoelectrochemical Activity for Water Splitting," J. Am. Chem. Soc., 133, 5629-5631, 2011.
[17] Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei and Y. Xie, "Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting, " Angew. Chem. Int. Ed., 51, 8727, 2013.
[18] Wikipedia contributors, "Sunlight," 維基百科, 自由的百科全書, 2014. <http://en.wikipedia.org/wiki/Sunlight>
[19] M. A. Khan, S. I. Woo, and O. B. Yang, "Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction, " Int. J. Hydrogen Energy, 33, 5345, 2008.
[20] X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang and Y. Dai, "Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity, " nanoscale, 5, 1870, 2013.
[21] Y. H. Ng, A. Iwase, A. Kudo and R. Amal, "Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting, " J. Phys. Chem. Lett., 1, 2607, 2010.
[22] G. Li, T. Kako, D. Wang, Z. Zou and J. Ye, "Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation, " Dalton Trans., 2423, 2009.
[23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, " Science, 293, 269, 2001.
[24] G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi and K. Domen, "An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm), " Chem. Commun., 1698, 2002.
[25] T. Sreethawong, S. Laehsalee and S. Chavadej, "Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation, " Int. J. Hydrogen Energy, 33, 5947, 2008.
[26] T. Peng, P. Zeng, D. Ke, X. Liu and X. Zhang, "Hydrothermal Preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS Nanocomposite and Its Efficient Photocatalytic Hydrogen Production under Visible Light Irradiation, " Energy Fuels, 25, 2203, 2011.
[27] F. Zhang, K. Maeda, T. Takata and K. Domen, "Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives, " J. Catal., 280, 1, 2011.
[28] K. Maeda and K. Domen, "Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light, " Chem. Mater., 22, 612, 2010.
[29] A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh and D. S. Larsen, "Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe-CdS Nanocrystals, " J. Phys. Chem. Lett., 2, 2688, 2011.
[30] I. Tsuji, H. Kato and A. Kudo, Angew, "Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst, " Chem. Int. Ed., 44, 3365, 2005.
[31] K. Zhang and Liejin Guo, "Metal sulphide semiconductors for photocatalytic hydrogen production, " Catal. Sci. Technol., 3, 1672, 2013.
[32] L. A. Silva, S. Y. Ryu, J. Choi, W. Choi and M. R. Hoffmann, "Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS, " J. Phys. Chem. C, 112, 32, 12069, 2008.
[33] L. Wang, W. Wang, M. Shang, W. Yin, S. Sun and L. Zhang, "Enhanced photocatalytic hydrogen evolution under visible light over Cd1−xZnxS solid solution with cubic zinc blend phase, " International Journal of Hydrogen Energy, 35, 19, 2010.
[34] H. Liu, K. Zhang, D. Jing, G. Liu and L. Guo, "SrS-CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation, " International Journal of Hydrogen Energy, 35, 7080, 2010.
[35] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, "Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation, J. AM. CHEM. SOC., 130, 7176, 2008.
[36] Y. Xu and M. A. A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals, American Mineralogist, 85, 543, 2000.
[37] M. Liu, L. Wang, G. Lu, X. Yao and L. Guo, "Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water, " Energy Environ. Sci., 4, 1372, 2011.
[38] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei and J. Shi and C. Li, "Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS-CdS photocatalyst, Journal of Catalysis, 266, 165, 2009.
[39] J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang and W. Zheng, "Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties, " CrystEngComm, 14, 832, 2012.
[40] A. Umar, M. S. Akhtar, G. N. Dar, M. Abaker, A. Al-Hajry and S. Baskoutas, "Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes, " Talanta, 114, 183, 2013.
[41] Y. Lei, S. Song, W. Fan, Y. Xing and H. Zhang, "Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2 Hierarchical Structures and Their Enhanced Photocatalytic Property, " J. Phys. Chem. C, 113, 1280, 2009.
[42] D. Ma, H. Zhou, J. Zhang and Y. Qian, "Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals, " Materials Chemistry and Physics, 111, 391, 2008.
[43] H. Liu, Y. Su, P. Chen and Y. Wang, "Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity, " Journal of Molecular Catalysis A: Chemical, 378, 285, 2013.
[44] X. Li, J. Zhu and H. Li, "Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS, " Applied Catalysis B Environmental, 123-124, 174, 2012.
[45] Y. C. Zhang, Z. N. Du and M. Zhang, "Hydrothermal synthesis of SnO2/SnS2 nanocomposite with high visible light-driven photocatalytic activity, " Materials Letters, 65, 2891, 2011.
[46] Y. C. Zhang, Z. N. Du, K. W. Li, M. Zhang and D. D. Dionysiou, "High-Performance Visible-Light-Driven SnS2/SnO2 Nanocomposite Photocatalyst Prepared via In situ Hydrothermal Oxidation of SnS2 Nanoparticles, " ACS Appl. Mater. Interfaces, 3, 1528, 2011.
[47] C. Yang, W. Wang, Z. Shan and F Huang, "Preparation and photocatalytic
activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2, " Journal of Solid State Chemistry, 182, 807, 2009.
[48] F. Yang, G. Han, D. Fu, Y. Chang and H. Wang, "Improved photodegradation activity of TiO2 via decoration with SnS2 nanoparticles, " Materials Chemistry and Physics, 140, 398, 2013.
[49] F. Yang, G. Han, D. Fu, Z. Liu, "Improving the photo-degradation activity of SnS2 under visible light by TiO2 (rutile), " Materials Letters, 99, 24, 2013.
[50] X. Zhou, T. Zhou, J. Hu and J. Li, "Controlled strategy to synthesize SnO2 decorated SnS2 nanosheets with enhanced visible light photocatalytic activity, " CrystEngComm, 14, 5627, 2012.
[51] Y. C. Zhang, Z. N. Du, K. W. Li and M. Zhang, "Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange, " Separation and Purification Technology, 81, 101, 2011.
[52] X. An, J. C. Yu and J. Tang, "Biomolecule-assisted fabrication of copper doped SnS2 nanosheet–reduced graphene oxide junctions with enhanced visible-light photocatalytic activity, " Journal of Materials Chemistry A, 2, 1000, 2014.
[53] R. Wei, J. Hu, T. Zhou, X. Zhou, J. Liu and J. Li, "Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties, " Acta Materialia, 66, 163, 2014.
[54] C. Zhai, N. Du and H. Z. D. Yang, "Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage, " ChemComm, 47, 1270, 2011.
[55] 余宗軒, "具磁性可回收之可見光應答光觸媒於光催化分解水產氫之研究," 國立清華大學化學工程學系碩士論文, 2012.
[56] 趙康如, "碳修飾與石墨烯量子點於光催化分解水產氫之研究, " 國立清華大學化學工程學系碩士論文, 2013.
[57] X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductor-based Photocatalytic Hydrogen Generation, " Chem. Rev., 110, 6503, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *