|
REFERENCES 1. BOWMAN, A. W. and AZZALINI, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford. 2. BOWMAN, A. W. and YOUNG, S. (1996). Graphical comparison of nonparametric curves. Appl. Statist. 45, 83-98. 3. DELGADO, M. A. (1993). Testing the equality of nonparametric regression curves. Statist. Probab. Lett. 17, 199-204. 4. FAN, J. and GIJBELS, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London. 5. GØRGENS, T. (2002). Nonparametric comparison of regression curves by local linear tting. Statist. Probab. Lett. 60, 81-89. 6. HONG, W. Q. (2014). Testing the equality of multiple regression curves based on local polynomial regression. Master thesis, N. T. H. U., Hsinchu, TAIWAN. 7. HUANG, L. S. and CHEN, J. (2008). Analysis of variance, coecient of determination, and F-test for local polynomial regression. Ann. Statist. 36, 2085-2109. 8. HUANG, L. S. and DAVIDSON, P. W. (2010). Analysis of variance and F-tests for partial linear models with applications to environmental health data. J. Am. Stat. Assoc. 105, 991-1004. 9. HUANG, L. S. and SU, H. (2009). Nonparametric F-tests for nested global and local polynomial models. J. Stat. Plan. Infer. 139, 1372-1380. 10. Opsomer, J. D. and Ruppert, D. (1999). A root-n consistent estimators for semiparametric additive models. J. Comput. Graph. Stat. 8, 715-732. 38 11. Pardo-Fernandez, J. C., Van Keilegom, I. and Gonzalez-Manteiga, W. (2007). Testing for the equality of k regression curves. Stat. Sinica. 17, 1115-1137. 12. KING, E. C., HART, J. D. and WEHRLY, T. E. (1991). Testing the equality of two regression curves using linear smoothers. Statist. Probab. Lett. 12, 239-247. 13. KULASEKERA, K. B. (1995). Comparison of regression curves using quasi-residuals. J. Amer. Statist. Assoc. 90, 1085-1093. 14. MUNK, A. and DETTE, H. (1998). Nonparametric comparison of several regression functions: Exact and asymptotic theory. Ann. Statist. 26, 2339-2368. 15. Speckman, P. (1988). Kernel smoothing in partial linear models. J. Roy. Stat. Soc. B. 50, 413-436. 16. SRIHERA, R. and STUTE, W. (2010). Nonparametric comparison of regression functions . J. Multivar. Anal. 101, 2039-2059. 17. Wood S. N. (2006). Generalized Additive Models: An introduction with R. Chapman & Hall, London. 18. YOUNG, S. G. and BOWMAN, A. W. (1995). Nonparametric analysis of covariance. Biometrics 51, 920-931. |