帳號:guest(3.137.200.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏邦廷
作者(外文):Yan, Bang-Ting
論文名稱(中文):以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
論文名稱(外文):Correlation Analyses of the Time-evolved Infrared Features of the Bacteriorhodopsin Photocycle
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):陳益佳
李耀昌
口試委員(外文):Chen, I-Chia
Lee, Yao-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023573
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:79
中文關鍵詞:時間解析紅外差異吸收光譜細菌視紫質差異吸收相關性等高線圖
外文關鍵詞:time-resolved Fourier transform infrared spectroscopybacteriorhodopsindifference absorbancecorrelation contour
相關次數:
  • 推薦推薦:0
  • 點閱點閱:405
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
吾人以時間解析傅氏紅外光譜儀研究細菌視紫質的光迴圈行為,並由紅外差異吸收光譜中挑選出12支特徵吸收峰,將其時間側寫以相關性方法進行分析,繪製出數個時間區段內的相關性等高線圖。藉由觀察等高線圖之中相關性反轉,分析光迴圈中的動力學行為受到驅動力影響的強度及時序,其結果與前人對光迴圈中間態演進的研究吻合。吾人希望提供一個不需要建立中間態以及整體指數擬合分析的方法,直接由吸收峰之間隨時間變化的關聯性,獲得光迴圈中質子傳遞過程的動力學資訊。
A step-scan Fourier-transform interferometer was employed to collect the time-evolved difference infrared spectra of bacteriorhodopsin upon photoexcitation. Without a kinetics model being established or target analysis to extract the difference spectra of the intermediates in the conventional photocycle, correlation analysis of the infrared features was used to examine the evolution of the interactive strengths between the retinal Schiff base and its proton donor and acceptor in different periods of the photocycle. Following the evolution of the correlation, those correlative characteristics satisfactorily coincided with the transitions of M  N, N  O, and O  bR. We therefore have illustrated the trajectory of the driving forces on the localized molecular moieties during the photocycle: proton acceptor Asp85 (1762 and 1755 cm–1) → proton donor Asp96 (1400 cm–1) → C–C stretch of 13-cis retinal (1186 cm–1) → C14=C15 stretch of all-trans retinal (1506 cm–1) → C10–C11 stretch of all-trans retinal (1168 cm–1). The correlation analysis successfully provided the dynamic and local conformational alterations as the bR photocycle evolved, without the need to establish a kinetics model, introduce discrete intermediates, or use deconvolution algebra. Including more bands in the correlation analysis provides more thorough information of the structural alteration of the photocycle. The combination of the time-resolved infrared spectroscopic method and the correlation analysis could be a promising method of illustrating the photochemistry of photosynthetic proteins at the molecular level.
第一章 摘要
1.1 前言
1.2 文獻回顧
1.3 實驗動機

第二章 細菌視紫質及紫膜的性質
2.1 細菌視紫質的三級結構
2.2 紫膜的組成與特性
2.3 細菌視紫質的光迴圈特性
2.4 紫膜的紅外吸收光譜特性
2.5 細菌視紫質光迴圈的紅外差異吸收光譜特性

第三章 光譜技術原理、儀器架設與數據處裡
3.1 傅立葉轉換紅外光譜儀
3.1.1 邁克森干涉儀
3.1.2 單色光干涉與多色光干涉
3.1.3 傅立葉轉換
3.1.4 截斷函數
3.1.5 削足函數
3.1.6 相位誤差與相位校正
3.1.7 連續掃描之取樣方式
3.2 步進式掃描時間解析紅外光譜技術
3.2.1 工作原理
3.2.2 跳點取樣
3.2.3 AC與DC耦合的數據擷取
3.3 實驗裝置
3.3.1 雷射激發系統
3.3.2 反應樣品槽
3.3.3 步進式掃描傅氏轉換紅外光譜儀
3.3.4 數據擷取與儀器時序控制系統
3.4 數據分析方法
3.4.1 隨時間演進之相關性及其等高線圖表示法
3.4.2 差異吸收峰之指派

第四章 結果與討論
4.1 章節簡介
4.2 結果與討論
4.2.1 A→B→C區間之比較
4.2.2 C2→D→E1區間之比較
4.2.3 E2→F區間之比較
4.2.4 bR蛋白質結構之相關性探討
4.3 分析結果整理

第五章 結論
[1] Oesterhelt, D.; Stoeckenius, W. Proc. Nat. Acad. Sci. U. S. A. 1973, 70, 2853−2857.
[2] Racker, E.; Stoeckenius, W. J. Bio. Chem. 1974, 249, 662−663.
[3] Gai, F.; Hasson, K. C.; McDonald, J. C.; Anfinrud, P. A. Science 1998, 279, 1886−1891.
[4] Stoeckenius, W.; Rowen, R. J. Cell Biol. 1967, 34, 365−393.
[5] Stoeckenius, W.; Kunau, W. H. J. Cell Biol. 1968, 38, 337−357.
[6] Oesterhelt, D.; Stoeckenius, W. Nat. New Biol. 1971, 233, 149−152.
[7] Blaurock, A. E.; Stoeckenius, W. Nat. New Biol. 1971, 233, 152−155.
[8] Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W. Biophys. J. 1975, 15, 955−962.
[9] Terner, J.; Campion, A.; El-Sayed, M. A. Proc. Nat. Acad. Sci. U. S. A. 1977, 74, 5212−5216.
[10] Eisfeld, W.; Pusch, C.; Diller, R.; Lohrmann, R.; Stockburger, M. Biochemistry 1993, 32, 7196−7215.
[11] Olejnik, J.; Brzezinski, B.; Zundelb, G. J. Mol. Structure 1992, 271, 157−173.
[12] Zscherp, C.; Heberle, J. J. Phys. Chem. B 1997, 101, 10542−10547.
[13] Lórenz-Fonfría, V. A.; Kandori, H. J. Am. Chem. Soc. 2009, 131, 5891–5901.
[14] Du, M.; and Fleming, G. R. Biophys. Chem. 1993, 48, 101–111.
[15] Groot, H. J. M.; Harbison, G. S.; Herzfeld, J.; Griffin, R. G. Biochemistry, 1989, 28, 3346–3353.
[16] Mak-Jurkauskas, M. L.; Bajaj, V. S.; Hornstein, M. K.; Belenky, M.; Griffin, R. G; Herzfeld, J. Proc. Nat. Acad. Sci. U. S. A. 2008, 105, 883−888.
[17] K hlbrandt, W. Nature 2000, 406, 569−570.
[18] Luecke, H.; Schobert, B.; Richard, H. T.; Cartailler, J. P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899−911.
[19] Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K. J. Phys. Chem. B 2001, 105, 905−918.
[20] Lanyi, J. K. Annu. Rev. Physiol. 2004, 66, 665−688.
[21] Garczarek, F.; Gerwert, K. Nature 2006, 439, 109−112.
[22] Lanyi, J. K. Biochim. Biophys. Acta 2006, 1757, 1012−1018.
[23] Lanyi, J. K.; A Structural View of Proton Transport by Bacteriorhodopsin; Royal Society of Chemistry, 2005.
[24] Henderson, H. J. Mol. Biol. 1975, 93, 123−138
[25] Kate, M.; Kushwaha, S. C.; Sprott, G. D. Methods Enzymol. 1982, 88, 98−111.
[26] Dracheva, S.; Bose, S.; Hendler, R. W. FEBS Lett. 1996, 382, 209−212.
[27] Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Wang, S. Q.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; Wise, K. J. J.
77
Phys. Chem. B 1999, 103, 10746−10766.
[28] Edman, K.; Nollert, P.; Royant, A.; Belrhali, H.; Pebay-Peyroula, E.; Hajdu, J.; Neutze, R.; Landau, E. M. Nature 1999, 401, 822−826.
[29] Brown, L. S.; Lanyi, J. K. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 1731−1734.
[30] Royant, A.; Edman, K.; Ursby, T.; Peybay-Peyroula, E.; Landau, E. M.; Neutze, R. Nature 2000, 406, 645−648.
[31] Balashov, S. P.; Govindjee, R.; Kono, M.; Imasheva, E.; Lukashev, E.; Ebrey, T. G.; Crouch, R. K.; Menick, D. R.; Feng, Y. Biochemistry 1993, 32, 10331−10343.
[32] Lanyi, J. K.; J. Biol. Chem. 1997, 272, 31209−31212.
[33] Braiman, M. S.; Bousche, O.; Rothschild, K. J. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 2388−2392.
[34] Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. Biochemistry 1983, 22, 6141−6148.
[35] Morgan, J. E.; Vakkasoglu, A. S.; Gennis, R. B.; Maeda, A. Biochemistry 2007, 46, 2787−2796.
[36] Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829−834.
[37] Wang, J.; Link, S.; Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2002, 83, 1557−1566.
[38] Renthal, R.; Gracia, N.; Regalado, R. Photochem. Photobiol. 2000, 72, 714−718.
[39] Dioumaev, A. K.; Biochemistry 2001, 66, 1269−1276.
[40] Tamm, L. K.; Tatulian, S. A. Quart. Rev. Biophys. 1997, 30, 365−429.
[41] Dwivedi, A. M.; Krimm, S. Biopolym. 1984, 23, 2025−2065. (HERE)
[42] Krimms, S.; Dwivedi, A. M. Science 1982, 216, 407−408.
[43] Barth, A.; Zscherp, C. Quart. Rev. Biophys. 2002, 35, 369−430.
[44] Barth, A. Progr. Biophys. Mol. Biol. 2000, 74, 141−173.
[45] Barnett, S. M.; Dracheva, S.; Hendler, R. W.; Levin, I. W. Biochemistry 1996, 35, 4558−4567.
[46] Arrondo, J. L. R.; Go I, F. M. Chem. Phys. Lipids 1998, 96, 53−68.
[47] Sasaki, J.; Lanyi, J. K.; Needleman, R.; Yoshizawa, T.; Maeda, A. Biochemistry 1994, 33, 3178−3184.
[48] Rothschild, K. J.; Degrip, W. J.; Sanches, R. Biochem. Biophys. Acta 1980, 596, 338−351.
[49] Rothschild, K, J.; Grip, W. J. D.; Stanley, H. E. Science 1976, 191, 1176−1178.
[50] Ahmed, H. Principles and reactions of protein extraction, purification and characterization; Boca Raton, USA, 2005.
[51] Rothschild, K. J.; Braiman, M. S.; He, Y. W.; Marti, T.; Khorana, H. G. J. Biol. Chem. 1990, 265, 16985−16991.
78
[52] Lórenz-Fonfría, V. A.; Furutani, Y.; Kandori, H. Biochemistry 2008, 47, 4071–4081.
[53] Siebert, F.; Mäntele, W. Eur. J. Biochem. 1983, 130, 565–571.
[54] Rothschild, K. J.; Roepe, P.; Lugtenburg, J.; Pardoen, J. A. Biochemistry 1984, 23, 6103–6109.
[55] Zscherp, C.; Schlesinger, R.; Tittor, J.; Oesterhelt, D.; Heberle, J. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 5498–5503.
[56] Morgan, J. E.; Vakkasoglu, A. S.; Lugtenburg, J.; Gennis, R. B.; Maeda, A. Biochemistry 2008, 47, 11598–11605.
[57] Wang, J.; El-Sayed, M. A. Biophys. J. 2001, 80, 961–971.
[58] Braiman, M. S.; Mogi, T.; Marti, T.; Stern, L. J.; Khorana, H. G.; Rothschild, K. J. Biochemistry 1988, 27, 8516−8520.
[59] Smith, S. O.; Myers, A. B.; Mathies, R. A.; Pardoen, J. A.; Winkel, C.; Van Den Berg, E. M. M.; Lugtenburg, J. Biophys. J. 1985, 47, 653–664.
[60] Riesle, J.; Oesterhelt, D.; Dencher, N. A.; Heberle, J. Biochemistry 2006, 35, 6635–6643.
[61] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques; Elsevier, 2005.
[62] Wartewig, S. IR and Raman Spectroscopy:Fundamental Processing; Wiley-VCH, 2005.
[63] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy; Wiley-VCH, 2011.
[64] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd.; Wiley, 2007.
[65] Jiang, E. Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation, 2003.
[66] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
[67] Chu, L. K.; Lee, Y. P. Instruments Today 2009, 31, 27−35.
[68] Noguchi, T.; Sugiura, M. Biochemistry 2002, 41, 2322–2330.
[69] Mark, S. B,; Olaf, B.; Kenneth, J. R. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2388-2392.
[70] Hartland, G. V.; Qin, D.; Dai, H. L. J. Chem. Phys. 1994, 100, 7832.
[71] Yeh, P. S.; Leu, G. H.; Lee, Y. P.; Chen, I. C. J. Chem. Phys. 1995, 103, 4879.
[72] Hu, X.; Frei, H.; Spiro, T. G. Biochemistry 1996, 35, 13001−13005.
[73] Huang, C. Y.; Getahun, Z.; Wang, T.; DeGrado, W. F.; Gai, F. J. Am. Chem. Soc. 2001, 123, 12111−12112.
[74] Vasenkov, S.; Frei, H. J. Phys. Chem. A 2000, 104, 4327−4332.
[75] Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. J. Statist. Software 2012, 49, 1–22.
79
[76] Mertz, L. Transformations in Optics; Wiley, 1965.
[77] Mertz, L. Infrared Phys. 1967, 7, 17–23.
[78] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters; Springer Science & Business Media, 2002.
[79] Fellgett, P. B. J. Phys. Radium 1958, 19, 187−191.
[80] Jacquinot, P. Rep. Progr. Phys. 1960, 23, 267−312.
[81] Connes, J.; Connes, P. J. Opt. Soc. Am. 1966, 56, 896−910.
[82] Robin, R.; Gregor, H.; Marthias, L.; Klaus, G. Biochemistry 1998, 37, 5001−5009.
[83] Christian, Z.; Ramona, S.; Jorg, T.; Dieter, O.; Joachim, H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5498−5503.
[84] Lanyi, J, K., Bacteriorhodopsin, Chemistry of. In Wiley Encyclopedia of Chemical Biology, Begley, T.P., ED. John Wiley & Sons, Inc.: 2007.
[85] Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Lugtenburg, J.; Gennis, R. B.; Maeda, A. Biophys. J. 2012, 103, 444−452.
[86] Tittor, J.; Paula, S.; Subramaniam, S.; Heberle, J.; Henderson, R.; Oesterhelt, O., J. Mol. Biol. 2002, 319, 555−565.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 界面活性劑對紫膜及細菌視紫質結構的影響
2. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
3. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
4. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
5. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
6. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
7. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
8. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
9. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
10. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
11. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
12. 以步進式掃描時間解析傅立葉轉換紅外光譜術偵測苯基陸森紅酯(Roussin’s red benzyl ester) 在不同溶劑環境中之光解反應
13. 以聚脯胺酸調控色胺酸與金奈米粒子之距離探討螢光淬熄效應
14. 以時間相關單光子計數系統與圓二色光譜法研究聚脯胺酸鏈長對於色胺酸對的螢光及光學活性之影響
15. 以步進式掃描傅立葉轉換紅外光譜儀研究不同表面修飾金奈米棒經光激發後之輻射冷卻過程
 
* *