帳號:guest(3.129.249.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程煜翔
作者(外文):Cheng, Yu-Hsiang
論文名稱(中文):順式二苯乙烯/芴螺旋體衍生物於有機電激發光二極體的應用
論文名稱(外文):The Application of Spirally Configured Cis-Stilbene/Fluorene Derivatives on Organic Light Emitting Diode
指導教授(中文):陳建添
指導教授(外文):Chen, Chien-Tien
口試委員(中文):鄭建鴻
周卓煇
洪文誼
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023572
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:324
中文關鍵詞:有機電激發光二極體藍色螢光電子傳輸層
外文關鍵詞:OLEDBlue FluorescentElectron Transporting Layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:128
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
目前商業化的有機電激發光二極體元件中,以磷光材料來製作元件會有較高的效能表現,但其中藍色磷光材料由於受限壽命較短的關係,使得商業化的有機電激發光二極體元件大部分還是使用有較長壽命的藍色螢光材料,不過螢光元件較低的量子轉換率依舊是其重大的瓶頸。在此,我們合成出以順式二苯乙烯/芴螺旋體混成系統為核心架構,並在C3與C7位置上引入相同取代的拉電子官能基,期望能夠製作出具有三重態-三重態淬熄效應的藍色螢光元件,藉此使外部量子產率突破理論值5%,其中在元件結構為ITO/mCP : 4% ReO3 (60 nm)/mCP (20 nm)/PhCN (50 nm)/Liq/Al時,最大外部量子效率為5.1 % ; 最大發光效率為6.1 cd/A ; 最大功率效率為4.4 lm/W,最大發光亮度可達32,300 cd/m2,CIE(x, y)座落於(0.14, 0.15),為一標準藍色螢光元件,另外在元件結構為ITO/PEDOT : PSS (35 nm)/SimCP2 + 1 wt% PhCN (20 nm)/TPBI (35 nm)/LiF (1 nm)/Al (150 nm)時, 最大外部量子產率為5.8 % ; 最大發光效率為4.4 cd/A ; 最大功率效率為 3.1 lm/W,最大發光亮度可達1,270 cd/m2,CIE(x, y)座標座落於(0.15, 0.10),為一深藍色螢光元件,雖然以上兩元件並沒有三重態-三重態淬熄之效應,但還算是有不錯表現的藍色螢光元件。

此外,我們也嘗試以具有拉電子官能基的材料作為電子傳輸層的應用,其中在綠色磷光元件結構為ITO/HAT-CN (10 nm)/HT-01 + 3% F4 TCNQ (150 nm)/NPB (20 nm)/TPBI + 5% Ir(ppy)3 (30 nm)/BIMS (30 nm)/LiF (0.8 nm)/Al (120 nm)時,亮度為1,000 cd/m2條件下,BIMS元件的外部量子效率為10.7 % ; 發光效率為36.2 cd/A ; 功率效率為20.9 lm/W,半衰壽命可長達130小時,而最大亮度為23,588 cd/m2,可說是具有不錯的元件效能表現。另外在綠色磷光元件結構為ITO/HAT-CN (6 nm)/TAPC (30 nm)/[WPH401/WPH501 (5/4) + 10 wt% Ir(ppy)3 (15 nm)/PhCN (40 nm)/LiF (1 nm)/Al (100 nm)時,相對於BmPyPB元件,在亮度為1,000 cd/m2條件下,PhCN元件的外部量子效率增加了9.9 %; 發光效率增加了9.5 %; 功率效率則大幅增加了93.4 %,具有非常良好的元件效能表現。
而具有咪唑官能基團的BIMS,由於結構上類似廣泛使用的主體TPBI,因此也嘗試做為主體的應用,其中在紅色磷光元件結構為ITO/mCP : 4% ReO3 (60 nm)/mCP (20 nm)/BIMS : 10% OS1 (20 nm)/
BIMS (50 nm)/Liq/Al時,元件的最大外部量子效率為9.4 % ; 最大發光效率為8.7 cd/A ; 最大功率效率為9.9 lm/W,最大發光亮度可達20,778 cd/m2,CIE(x, y)座標座落於(0.66, 0.34)。
另外,我們也成功合成出新穎的紅色磷光材料Ir(SQ)2(acac),並成功地應用在濕式磷光元件上,在元件結構為ITO/PEDOT : PSS (35 nm)/GK-60 (10 nm)/CBP + 2 wt% Ir(SQ)2(acac) (15 nm)/TPBI (32 nm)/LiF(1 nm)/Al (100 nm)時,且亮度為100 cd/m2條件下,元件的外部量子效率為8.5 % ; 發光效率為0.68 cd/A ; 功率效率為0.36 lm/W,CIE(x, y)座標座落於(0.61, 0.23),最大亮度為688 cd/m2,算是具有不錯效能表現的標準紅光磷光元件。
Abstract
In current commercial OLED devices, the devices made of phosphorescent materials exhibit higher efficiency than fluorescent devices. However, most of the commercial blue OLED devices adopt fluorescent materials because of the less life time of the blue phosphorescent OLED devices. Although blue fluorescent OLED devices can maintain long life time, the low fluorescent quantum yield is still its serious disadvantage. So, here we synthesize cis stilbene/fluorene hybrid system for our template, and then connect same electron-withdrawing functional group at C3 and C7 positions, expecting for making high efficiency blue fluorescent OLED devices which can exceed theoretical EQE (5%) by TTA effect. In ITO/mCP : 4% ReO3 (60 nm)/mCP (20 nm)/PhCN (50 nm)/Liq/Al configuration, this OLED device exhibits maximum external quantum efficiency (EQE) of 5.1% ; maximum current efficiency (CE) of 6.1 cd/A ; maximum power efficiency (PE) of 4.4 lm/W; maximum luminance of 32,300 cd/m2. Its CIE(x, y) locates at (0.14, 0.15), and we can call it as pure blue OLED device. For another ITO/PEDOT : PSS (35 nm)/SimCP2 + 1 wt% PhCN (20 nm)/TPBI (35 nm)/LiF (1 nm)/Al (150 nm) configuration, this OLED device exhibits maximum EQE of 5.8 % ; maximum CE of 4.4 cd/A ; maximum PE of 3.1 lm/W ; maximum luminance of 1,270 cd/m2. Its CIE(x, y) locates at (0.15, 0.10), and we can call it as deep blue OLED device. Although the above two blue OLED devices do not show TTA effect, they still are not bad blue OLED devices.

What’s more, we also apply our electron-withdrawing compound to electron transport layer (ETL). In ITO/HAT-CN (10 nm)/HT-01 + 3% F4 TCNQ (150 nm)/NPB (20 nm)/TPBI + 5% Ir(ppy)3 (30 nm)/BIMS (30 nm)/LiF (0.8 nm)/Al (120 nm) configuration, this De facto standard device exhibits EQE of 10.7 % ; CE of 36.2 cd/A ; PE of 20.9 lm/W, and its half-life time can reach 130 hours on condition of luminance of 1,000 cd/m2. So, BIMS is capable of good electron transport ability in this green phosphorescent OLED device. For another green phosphorescent device, ITO/HAT-CN (6 nm)/TAPC (30 nm)/[WPH401/WPH501 (5/4) + 10 wt% Ir(ppy)3 (15 nm)/PhCN (40 nm)/LiF (1 nm)/Al (100 nm), this device has increased by 9.9 % of EQE, 9.5 % of CE, and specially 93.4% of PE compared to BmPyPB device on condition of luminance of 1,000 cd/m2. Thus, PhCN has great electron transport ability in this green phosphorescent device.
In addition, Because the structure of BIMS looks like TPBI, which is commercial host material, we also apply BIMS to host. For the red phosphorescent device, ITO/mCP : 4% ReO3 (60 nm)/mCP (20 nm)/BIMS : 10% OS1 (20 nm)/BIMS (50 nm)/Liq/Al, this device exhibits maximum EQE of 9.4 % ; maximum CE of 8.7 cd/A ; maximum PE of 9.9 lm/W; maximum luminance of 20,778 cd/m2, and its CIE(x, y) locates at (0.66, 0.34). However, BIMS shows terrible host ability for the green and yellow phosphorescent device.
Furthermore, we also successfully synthesize novel red phosphorescent material called Ir(SQ)2(acac), and apply Ir(SQ)2(acac) to wet-processed OLED device. For configuration, ITO/PEDOT : PSS (35 nm)/GK-60 (10 nm)/CBP + 2 wt% Ir(SQ)2(acac) (15 nm)/TPBI (32 nm)/LiF (1 nm)/Al (100 nm), this device shows EQE of 8.5 % ; CE of 0.68 cd/A ; PE of 0.36 lm/W on condition of luminance of 100 cd/m2, and its CIE(x, y) locate at (0.61, 0.23). It seems good and standard red phosphorescent device.
目錄
中文摘要
Abstract
圖目錄 I
表目錄 XIX
流程目錄 XXII
第一章 有機電激發光二極體之緒論 1
1-1、前言 1
1-2、分子發光機制 7
1-2-1、激發 7
1-2-2、緩解 8
1-2-3、電激發 10
1-2-4、電激發主客體系統發光機制 11
1-3、有機電激發光二極體之發展 16
1-4、有機電激發光二極體元件基本結構 18
1-5、有機電激發光二極體材料 20
1-5-1、陽極材料 (Anode materials) 22
1-5-2、電洞注入材料 (Hole injection materials) 22
1-5-3、電洞傳輸材料 (Hole transporting materials) 24
1-5-4、電洞阻擋材料 (Hole blocking materials) 25
1-5-5、電子傳輸材料 (Electron transporting materials) 26
1-5-6、電子注入材料 (Electron injection materials) 27
1-5-7、陰極材料 (Cathode materials) 27
1-5-8、螢光發光材料 (fluorescent emitting materials) 28
1-5-9、磷光發光材料 (phosphorescent emitting materials) 31
1-6、雙極性螢光小分子材料 39
1-7、有機電激發光二極體材料之電荷移動率 45
1-8、有機電激發光二極體之光色 47
1-9、有機電激發光二極體之效率 48
1-9-1、量子產率 48
1-9-2、發光效率及電源效率 51
1-10、元件內部之能量轉移 52
1-10-1、分子間能量轉移 52
1-10-2、產生焦耳熱 53
1-11、研究背景 53
第二章 、以順式二苯乙烯/芴螺旋體衍生物於有機電激發光二極體之螢光客體材料的應用 57
2-1、研究背景 57
2-2、文獻回顧 58
2-2-1、高效率藍色螢光元件 58
2-2-2、三重態-三重態淬熄延遲螢光(Triplet-Triplet Annihilation Delayed Fluorescence, TTA)效應之介紹與其相關研究 61
2-3、分子設計、合成及結構分析 74
2-4、熱、光物理、電化學性質之探討 96
2-5、元件結果與討論 123
2-5-1、藍色螢光元件探討: 123
2-5-2、以化合物5、6 ( N2-STIF-B2、B2-STIF-N2 )為螢光客體之元件 154
第三章 、順式二苯乙烯/芴螺旋體之咪唑衍生物於有機電激發光二極體之主體的應用 165
3-1、文獻回顧 165
3-2、元件結果與討論 169
第四章 、順式二苯乙烯/芴螺旋體衍生物於有機電激發光二極體之磷光材料的應用 179
4-1、文獻回顧 179
4-2、研究動機 185
4-3、元件結果與討論 186
第五章 、 以順式二苯乙烯/芴螺旋體衍生物作為有機電激發光二極體之新型電子傳輸層材料 208
5-1、研究背景 208
5-1-1、電子傳輸層材料之發展 208
5-1-2、電子傳輸層材料之特性 208
5-1-3、電子傳輸層材料之種類 209
5-2、元件結果與討論 233
第六章 、結論與未來展望 278
6-1、結論 278
6-2、未來展望 281
第七章 、 儀器設備與實驗 286
7-1、分析儀器 286
7-2、光電元件製備及量測 290
7-3、實驗步驟及數據分析 290
參考文獻 312
附錄壹、核磁共振光譜圖 1
附錄貳 薄膜HOMO能階量測數據(AC-Ⅱ) 42
附錄參 薄膜量子產率量測數據 45
附錄肆 X光單晶繞射結構解析 48
參考文獻
(1) (a) Mullen, K.; Scherf, U.; Organic Light-Emitting Devices. Synthesis, Properties and Applications; Wiley: Weinheim, Germany, 2006. (b) Chen, C.-H.; Huang, S.-W. OLED/Organic Electroluminescent Materials & Devices; Wunan: Taipei, Taiwan, 2006.
(2) M. A. Baldo; D. F. O’Brien; M. E. Thompson; S. R. Forrest, Phys. Rev. B, 1999, 60, 14422.
(3) (a) R. J. Holmes; B. W. D’Andrade; S. R. Forrest; X. Ren; J. Li; M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818. (b) X. Ren; J. Li; R. J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater. 2004, 16, 4743.
(4) G. Destriau, J. Chem. Phys. 1936, 33, 587.
(5) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
(6) Helfrich, W.; Schneider, W. Phys. Rev. Lett. 1965, 14, 669.
(7) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(8) Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
(9) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
(10) (a) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1991, 27, L269. (b) Adachi, C.; Tokito, S. Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2. 1991. 27, L713.
(11) Ishida, T.; Kobayashi, H.; Nakato, Y.; J. Appl. Phys. 1993, 73, 4344.

(12) VanSlyke, S. A.; Chen, C.-H.; Tang, C. W. Appl. Phys. Lett. 1996, 29, 2160.
(13) Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807.
(14) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Trum, S.; Wehrmann, R. Synth. Met. 2000, 11, 139.
(15) (a) Jang, J. G.; Song, S. H. 2004, WO2004054326 (b) Y.-K. Kim; J. W. Kim; Y. Park, Appl. Phys. Lett. 2009, 94, 063305.
(16) Deng, Z.-B.; Ding, X.-M.; Lee, S.-T.; Gmbling, W. A. Appl. Phys. Lett. 1999, 74, 2777.
(17) Hung, L. S.; Zheng, L. R.; Mason, M. G. Appl. Phys. Lett. 2001, 78, 679.
(18) Zhao, J.-M.; Zhang, S.-T.; Wang, X.-J.; Zhan, Y.-Q.; Wang, X.-Z.; Zhong, G.-Y.; Wang, Z.-J.; Ding, X.-M.; Huang, W.; Hou, X.-Y. Appl. Phys. Lett. 2003, 84, 2913.
(19) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367.
(20) Salbeck, J.; Yu, N.; Bauer, J.; Weissotel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
(21) Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 667.
(22) Case, F. H.; Brennan, J. A. J. Org. Chem. 1954, 19, 919.
(23) Kinoshita, M.; Shirota, Y. Adv, Funct. Mater. 2002, 12, 780.
(24) J. Shi; C. W. Tang; C. H. Chen, 1997, U. S. Patent 5646948
(25) S.-J. Su; T. Takeda; J. Kido; T. Chiba. Adv. Mater. 2008, 20, 2125.
(26) J. D. Anderson; E. M. McDonald; P. A. Lee; M. L. Anderson; E. L. Ritchie; H. K. Hall; T. Hopkins; E. A. Mash; J. Wang; A. Padias; S. Thayumanavan; S. Barlow; S. R. Marder; G. E. Jabbour; S. Shaheen; B. Kippelen; N. Peyghambarian; R. M. Wightman; N. R. Armstrong, J. Am. Chem. Soc. 1998, 120, 9646.
(27) Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices. 1997, 44, 1425.
(28) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. Lett. 2003, 93, 6159.
(29) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
(30) (a) Yeh, H. C.; Yeh, S. J.; Chen, C. T. Chem. Commun. 2003, 2632. (b) Lee, Y. T.; Chiang, C. L.; Chen, C. T. Chem. Commun. 2008, 217.
(31) (a) Ku, S. Y.; Chi, L. C.; Hung, W. Y.; Yang, S. W.; Tsai, T. C.; Wong, K. T.; Chen, Y. H.; Wu, C. I. J. Mater. Chem. 2009, 19, 773. (b) Yi Yuan; Hin-Wai Mo; Tsz-Wai Ng; Ming-Fai Lo; Zheng-Qing Guo; Chuan Wu; Chun-Sing Lee Chem. Asian J. 2013, 8, 1253.
(32) (a) Zhang, Y.; Lai, S. L.; Tong, Q. X.; Lo, M. F.; Ng, T. W.; Chan, M. Y.; Wen, Z. C.; He, J.; Sham, J. K.; Tang, X. L. Chem. Mater. 2012, 24, 61. (b) Xiaohui Yang; Shijun Zheng; Rebecca Bottger; Hyun Sik Chae; Takeshi Tanaka; Sheng Li; Amane Mochizuki; Ghassan. E. Jabbour J. Phys. Chem. C, 2011, 115, 14347.
(33) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.
(34) Cao, Y.; Parker, I. D.; Y, G.; Zhang, C.; Heeger, A. Nature 1999, 397, 414.
(35) Hosokawa, C.; Sakamoto, S. 1995, U.S. 5389444.
(36) Atul Chaskar; H.-F. Chen; K.-T. Wong, Adv. Mater. 2011, 23, 3876.
(37) (a) R. J. Holmes; S. R. Forrest; Y.- J. Tung; R. C. Kwong; J. J. Brown; S. Garon; M. E. Thompson, Appl. Phys. Lett. 2003, 82, 2422. (b) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett. 2003, 83, 569. (c) J. Kavitha; S.-Y. Chang; Y. Chi; J.-K. Yu; Y.-H. Hu; P.-T. Chou; S.-M. Peng; G.-H. Lee; Y.-T. Tao; C.-H. Chien; A. J. Carty, Adv. Funct. Mater. 2005, 15, 223.
(38) (a) S. Lamansky; P. Djurovich; D. Murphy; F. Abdel-Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304. (b) T. Tsutsui; M. J. Yang; M. Yahiro; K. Nakamura; T. Watanabe; T. Tsuji; M. Fukuda; T. Wakimoto; S. Miyaguchi, Jpn. J. Appl. Phys. Part 2, 1999, 38, L1502. (c) C. Adachi; R. C. Kwong; S. R. Forrest, Org. Electron., 2001, 2, 37 (d) M. A. Baldo; M. E. Thompson; S. R. Forrest, Nature (London), 2000, 403, 750. (e) B. W. D’Andrade; M. A. Baldo, C. Adachi; J. Brooks; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 1045. (f) T. Watanabe; K. Nakamura; S. Kawami; Y. Fukuda; T. Tsuji; T. Wakimoto; S. Miyaguchi; M. Yahiro; M. J. Yang; T. Tsutsui., Synth. Met., 2001, 122, 203.
(39) C. Adachi; R. C. Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
(40) (a) V. Adamovich; J. Brooks; A. Tamayo; A. M. Alexander; P. I. Djurovich; B. W. D’Andrade; C. Adachi; S. R. Forrest; M. E. Thompson, New J. Chem., 2002, 26, 1171. (b) R. J. Holmes; S. R. Forrest; Y.-J. Tung; R. C. Kwong; J. J. Brown; S. Garon; M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
(41) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett., 2003, 83, 569.
(42) W. Li; J. Qiao; L. Duan; L. Wang; Y. Qiu, Tetrahedron. 2007, 63, 10161.
(43) M. Ikai; S. Ichinosawa; Y. Sakamoto; T. Suzuki; Y. Taga, Appl. Phys. Lett., 2001, 79, 156.
(44) T. Tsuzuki; S. Tokito, Appl. Phys. Lett. 2009, 94, 33302.
(45) J.-W. Kang; D.-S. Lee; H.-D. park; J. W. Kim; W.-I. Jeong; Y.-S. Park; S.-H. Lee; K. Go; J.-S. Lee; J.-J. Kim, Org. Electron. 2008, 9, 452.
(46) H. Inomata; K. Goushi; T.Masuko; T. Konno; T. Imai; H. Sasabe; J. J. Brown; C. Adachi, Chem. Mater., 2004, 16, 1285.
(47) T. Tsuji; S. Kawami; S. Miyaguchi; T. Naijo; T. Yuki; S. Matsuo; H. Miyazaki, Proceedings of SID’04, p.900, May 23-28, 2004, Seattle, USA.
(48) P. E. Burrows; A. B. Padmaperuma; L. S. Saplchak; P. Djurovich; M. E. Thompson, Appl. Phys. Lett., 2006, 18, 183503.
(49) P. A. Vecchi; A. B. Padmaperuma; H.Qiao; L. S. Sapochak; P. E. Burrows, Org. Lett., 2006, 8 (19), 4211.
(50) A. B. Padmaperuma; L. S. Sapochak; P. E. Burrows, Chem. Mater., 2006, 18, 2389.
(51) S. O. Jeon; S. E. Jang; H. S. Son; J. Y. Lee, Adv. Mater. 2011, 23, 1436.
(52) (a) S.-J. Su; H. Sasabe; T. Takeda; J. Kido, Chem. Mater. 2008, 20, 1691. (b) S.-J. Su; C. Cai; J. Kido, Chem. Mater. 2011, 23, 274.
(53) Y. Tao; Q. Wang; L. Ao; C. Zhong; J. Qin; C. Yang; D. Ma, J. Mater. Chem. 2010, 20, 1759.
(54) C. Adachi; M. A. Baldo; S. R. Forrest; S. Lamansky; M. E. Thompson; R. C. Kwong, Appl Phys. Lett., 2001, 78, 1622.
(55) A. Tsuboyama; H. Iwawaki; M. Furugori; T. Mukaide; J. Kamatani; S. Igawa; T. Moriyama; S. Miura; T. Takiguchi; S. Okada; M. Hoshino; K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971.
(56) Y.-L. Tung; S.-W. Lee; Y. Chi; Y.-T. Tao; C.-H. Chien; Y.-M. Cheng; P.-T. Chou; S.-M. Peng; C.-S. Liu, J. Mater. Chem. 2005, 15, 460.
(57) P.-I. Shih; C.-F. Shu; Y.-L.Tung; Y. Chi, Appl. Phys. Lett. 2006, 88, 251110.
(58) M. A. Baldo; S. Lamansky; P. E. Burrows; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
(59) H. Z. Xie; M. W. Liu; O. Y. Wang; X. H. Zhang; C. S. Lee; L. S. Hung; S. T. Lee; P. F. Teng; H. L. Kwong; H. Zheng; C. M. Che, Adv. Mater. 2001, 13, 1245.
(60) S. Lamansky; P. Djurovich; D. Murphy; F. A. Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am . Chem. Soc. 2001, 123, 4304.
(61) C. Adachi; R. Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
(62) (a) R. J. Holmes; B. W. D’Andrade; S. R. Forrest; X. Ren; J. Li; R. J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater., 2004, 16, 4743.
(63) A. B. Tamayo; B. D. Alleyne; P. I. Djurovich; S. Lamansky; I. Tsyba; N. N. Ho; R. Bau; M. E. Thompson, J. Am. Chem. Soc. 2003,125, 7377.
(64) Hutchison, G.; Ratner, M.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866.
(65) Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548.
(66) Thomas, K. R. J.; Lin, J.-T.; Tao, Y.-T.; Chuen, C.-H. Adv. Mater. 2002, 14, 822.
(67) Yan Zhu; Abhishek P. Kulkarni; Samson A. Jenekhe, Chem. Mater. 2005, 17, 5225.
(68) Li, Z. H.; Wong. M. S.; Fukutani, H.; Tao, Y. Org. Lett. 2006, 8, 4271.
(69) Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511.
(70) (a) Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J.-T.; Ke, T.-H.; Chen, L.-Y.; Tsai, M.-H.; Wu, C.-C. Angew. Chem. Int. Ed. 2008, 47, 581. (b) Chen, C.-H.; Huang, W.-S.; Lai, M.-Y.; Tsao, W.-C.; Lin, J.-T.; Wu, Y.-H.; Ke, T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater. 2009, 19, 2661.
(71) 陳金鑫 ; 黃孝文,夢幻顯示器 ; OLED材料與元件,五南出版社,2007, p.26-p.28.
(72) B. Chen; C.-S. Lee; S.-T. Lee; P. Webb; Y.-C. Chan; W. Gambling; H. Tian; W. Zhu, Jpn. J. Appl. Phys. Part 1, 2000, 39, 1190.
(73) Bulovic, V.; Khalfin, V. B.; Gu, G. Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
(74) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. J. Am. Chem. Soc. 1997, 119, 11341.
(75) Chen, W. C.; Lee, Y. W.; Chen, C. T. Org. Lett. 2010, 12, 1472.
(76) Wei, Y.; Chen, C.-T. J. Am. Chem. Soc. 2007, 129, 7478.
(77) Chen, C.-T.; Chao, W.-S.; Liu, H.-W.; Wei-Y.; Jou, J.-H.; S.Kumar, RSC Adv., 2013, 3, 9381.
(78) Y. Wei.; C.-T. Chen. J. AM . Chem. Soc. 2007, 129, 7478.
(79) H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.-H. Chen. C.-H. Cheng. Adv. Mater. 2012, 24, 5867.
(80) D. Yokoyama; Y. Park; B. Kim; S. Kim; Y.-J. Pu; J. Kido; J. Park. Appl. Phys. Lett. 99, 123303 (2011).
(81) H. Fukagawa; T. Shimizu; N. Ohbe; S. Tokito; K. Tokumaru; H. Fujikake. Org. Elec. 2012, 13, 1197.
(82) Y.-J. Pu; G. Nakata; F. Satoh; H. Sasabe; D. Yokoyama; J. Kido. Adv. Mater. 2012, 24, 1765.
(83) P.-Y. Chou; H.-H. Chou; Y.-H. Chen; T.-H. Su; C.-Y. Liao; H.-W. Lin; W.-C. Lin; H.-Y. Yen; I.-C. Chen; C.-H. Cheng. Chem. Commun. 2014, 50, 6869.
(84) (a) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Paker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. (b) Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. J. Am. Chem.Soc. 2004, 126, 12325.
(85) (a) Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853. (b) Woo, H.-S.; Cho, S.; Kwon, T.-W.; Park, D.-K. J. Korean Phys. Soc. 2005, 46, 981.
(86) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
(87) 魏屹 (2009),喹喔啉/二苯基芴及二苯乙烯/芴之雙重鄰位混成系統在光電材料上的應用,國立臺灣師範大學化學系博士論文。
(88) S. W. Wen; M. T. Lee; C. H. Chen, Journal of Display Technology, 2005, 1, 90.
(89) K.-T. Wong; S.-Y. Ku; Y.-M. Cheng; X.-Y. Lin; Y.-Y. Hung; S.-C. Pu; P.-T. Chou; G.-H. Lee; S.-M. Peng. J. Org. Chem. 2006, 71, 456.
(90) Y.-Y. Chien; K.-T. Wong; P.-T. Chou; Y.-M. Cheng. Chem. Commun. 2002, 2874.
(91) S.-Y. Ku; W.-Y. Hung; C.-W. Chen; S.-W. Yang; E. Mondal; Y. Chi; K.-T. Wong. Chem. Asian. J. 2012, 7, 133.
(92) (a) Miyaura, N.; Yamada, K.; Suzuki. A. Tetrahedron Lett. 1979, 36, 3437. (b) Miyaura, N.; Suzuki, A. Chem. Comm. 1979, 19, 866. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1979, 7, 2457.
(93) 蘇湋盛 (2014),順式二苯乙烯/芴螺旋體衍生之雙極型混成體於有機電激發光二極體和染料敏化太陽能電池材料之應用,國立清華大學碩士論文
(94) (a) Marrec, P. Dano, C.; Simonet, N. G.; Simonet, J. Synth. Met. 1997, 89, 171. (b) Abe, S. Y.; Bernede, J. C.; Delvalle, M. A.; Tregouet, Y.; Ragot, F.; Diaz, F. R. Lefrant, S. Synth. Met. 2002, 126, 1. (c) Inzelt, G. J. Solid State Electrochem. 2003, 7, 503. (d) K. M. Omer; S.-Y. Ku; Y.-C. Chen; K.-T. Wang; A. J. Bard. J. Am. Chem. Soc. 2010, 132, 10944.
(95) Y. Nakajima; D. Yamashita; A. Endo; T. Oyamada; C. Adachi; M. Uda, Proceedings of IDW’04, Dec.8-10, 2004, 1391, Niigat, Japan.
(96) J.-X. Luo; L.-X. Xiao; Z.-J. Chen; B. Qu; Q.-H. Gong. J. Phys. D: Appl. Phys. 2010, 43, 385101.
(97) C. Adachi; M. A. Baldo; S. R. Forrest; S. Lamansky; M. E. Thompson; R. C. Kwong. Appl. Phys. Lett. 2001, 78, 1622.
(98) M. T. Kao; W. Y. Hung; Z. H. Tsai; H. W. You; H. F. Chen; Y. Chi; K. T. Wong. J. Mater. Chem., 2011, 21, 1846.
(99) S. E. Jang; C. W. Joo; J. Y. Lee, Thin Solid Films, 2010, 519, 906.
(100) Ting, H.-C.; Chen, Y.-M.; You, H.-W.; Hung, W.-Y.; Lin, S.-H.; Chaskar, A.; Chou, S.-H.; Chi, Y.; Liu, R.-H.; Wong, K.-T. J. Mater. Chem., 2012, 22, 8399.
(101) H. Fujii; H. Sakurai; K. Tani; K. Wakisaka; T. Hirao. IEICE Electronics Express, 2005, Vol.2, No.8, 260.
(102) M.-T. Lee; M.-T. Chu; J.-S. Lin; M.-R. Tseng. J. Phys. D: Appl. Phys. 2010, 43, 442003.
(103) J.-A. Seo; M.-S. Gong; J.-Y. Lee. Organic Electronics, 2014, 15, 1843.
(104) H.Sasabe; E. Gonmori; T. Chiba; Y.-J. Li; D. Tanaka; S.-J. Su; T. Takeda; Y.-J. Pu; K. Nakayama; J. Kido. Chem. Mater. 2008, 20, 5951.
(105) F. Kessler; Y. Watanabe; H. Sasabe; H. Katajiri; Md. K. Nazeeruddin; M. Gratzel; J. Kido. J. Mater. Chem. C. 2013, 1, 1070.
(106) D. Tanaka; H. Sasabe; Y.-J. Li; S.-J. Su; T. Takeda; J. Kido. Jpn. J. Appl. Phys. 2007, 46, 1.
(107) H.-Y. Li; L. Zhou; M.-Y. Teng; Q.-L. Xu; C. Lin; Y.-X. Zheng; J.-L. Zuo; H.-J. Zhang; X.-Z. You. J. Mater. Chem. C. 2013, 1, 560.
(108) (a) E. H. Martin; J. Hirsch Solid State Commun. 1969, 7, 783. (b) 王雅琪 (2014),適用在高效率有機發光二極體的電子傳輸材料,國立清華大學材料科學工程學系碩士論文。
(109) J. D. Anderson; E. M. McDonald; P. A. Lee; M. L. Anderson; E. L. Ritchie; H. K. Hall; T. Hopkins; E. A. Mash; J. Wang; A. Padias; S. Thayumanavan; S. Barlow; S. R. Marder; G. E. Jabbour; S. Shaheen; B. Kippelen; N. Peyghambarian; R. M. Wightman; N. R. Armstrong J. Am. Chem. Soc. 1998, 120, 9646.
(110) (a) J. H. Jou; C. P. Wang; M. H. Wu; P. H. Chiang; H. W. Lin; H. C. Li; R. S. Liu Org Electron. 2007, 8, 29. (b) Q. S. Zhang; Q. G. Zhou; Y. X. Cheng; L. X. Wang; D. G. Ma; X. B. Jing; F. S. Wang Adv. Mater. 2004, 16, 432. (c) P. Chen; Q. Xue; W. F. Xie; Y. Duan; G. H. Xie; Y. Zhao; J. Y. Hou; S. Y. Liu; L. Y. Zhang; B. Li Appl. Phys. Lett. 2008, 93, 153508.
(111) (a) Z. Q. Gao; C. S. Lee; I. Bello; S. T. Lee; R. M. Chen; T. Y. Luh; J. Shi; C. W. Tang Appl. Phys. Lett. 1999, 74, 865. (b) H. T. Shih; C. H. Lin; H. H. Shih; C. H. Cheng Adv Mater. 2002, 14, 1409. (c) K. R. J. Thomas; J. T. Lin; Y. T. Tao; C. H. Chuen Chem. Mater. 2002, 14, 3852.
(112) (a) J. P. Duan; P. P. Sun; C. H. Cheng Adv. Mater. 2003, 15, 224. (b) T. D. Anthopoulos; J. P. J. Markham; E. B. Namdas; I. D. W. Samuel; S. C. Lo; P. L. Burn Appl. Phys. Lett. 2003, 82, 4824. (c) S. C. Lo; N. A. H. Male; J. P. J. Markham; S. W. Magennis; P. L. Burn; O. V. Salata; I. D. W. Samuel Adv. Mater. 2002, 14, 975.
(113) (a) V. I. Adamovich; S. R. Cordero; P. I. Djurovich; A. Tamayo; M. E. Thompson; B. W. D’ Andrade; S. R. Forrest Org. Electron. 2003, 4, 77. (b) M. A. Balo; S. Lamansky; P. E. Burrows; M. E. Thompson; S. R. Forrest Appl. Phys. Lett. 1999, 75, 4.
(114) S. Naka; H. Okada; H. Onnagawa; T. Tsutsui Appl. Phys. Lett. 2000, 76, 197.
(115) T. Yamamoto, K. Sugiyama, T. Kushida, T. Inoue, T. Kanbara, J. Am. Chem. Soc. 1996, 118, 3930.
(116) M. Jandke; P. Strohriegl; S. Berleb; E. Werner; W. Brutting Macromolecules. 1998, 31, 6434.
(117) M. Redecker; D. D. C. Bradley; M. Jandke; P. Strohriegl Appl. Phys. Lett. 1999, 75, 109.
(118) C. Schmitz; P. Posch; M. Thelakkat; H. W. Schmidt; A. Montali; K. Feldman; P. Smith; C. Weder Adv. Funct. Mater. 2001, 11, 41.
(119) S.-J. Su; Y. Takahashi; T. Chiba; T. Takeda; J. Kido Adv. Funct. Mater. 2009, 19, 1260.
(120) H. Ye; D. Chen; M. Liu; S.-J. Su; Y.-F. Wang; C.-C. Lo; A. Lien; J. Kido Adv. Funct. Mater. 2014, 24, 3268.
(121) Y. Sun; L. Duan; D. Zhang; J. Qiao; G. Dong; L. Wang; Y. Qiu Adv. Funct. Mater. 2011, 21, 1881.
(122) L. Xiao; S.-J. Su; Y. Agata; H. Lan; J. Kido Adv. Mater. 2009, 21, 1271.
(123) W. Jiang; H. Xu; X. Ban; G. Yuan; Y. Sun; B. Huang; L. Duan; Y. Qiu Org. Lett. 2014, 16, 1140.
(124) S. Gong; Y.-L. Chang; K. Wu; R. White; Z.-H. Lu; D. Song; C. Yang, Chem. Mater. 2014, 26, 1463.
(125) Dong, M.-S.; Wu, X.-M.; Hua, Y.-L.; Qi, Q.-J.; Yin, S.-G. Chin. Phys. Lett. 2010, 27, 127802.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 1-氮二芐環庚烷/芴螺旋體衍生物於有機電激發光二極體之應用
2. 1-氮二苯環庚烯/芴螺旋體衍生物及吖啶/芴螺旋體衍生物於有機電激發光二極體之應用
3. 二苄環庚烯/芴之雙鍵架橋混成體衍生物之合成及於有機電激發光二極體之應用
4. 唑類及芘衍生物之合成及應用於有機電激發光元件之研究
5. 超晶格式電子傳輸結構應用於有機發光元件之探討
6. 二苯乙烯/笏之雙重鄰位混成系統螢光衍生物於有機電激發光二極體之應用
7. N-亞柳胺基酸衍生之掌性氧釩錯合物催化 β-酮基酯類進行不對稱 1,4-共軛加成反應及 α-重氮酯類進行不對稱 N-H 嵌合反應之研究
8. 以氮-亞柳胺基四氮唑之掌性釩氧錯合物催化三甲基矽基烯酮縮醛和靛紅衍生物進行不對稱醛醇加成反應之研究
9. C3和C7具胺基、炔基和三唑取代之二苄環庚烯結合下盤四氫萘為骨架之薄荷酯所衍生的螺旋烯做為液晶光學開關之研究
10. 2, 3, 7, 8-雙茚基稠合二苯乙烯/芴之雙重鄰位混成系統螢光衍生物於有機電激發光二極體之應用
11. 以C4-對稱釩酸鹽中心之四聚簇狀體,作為增效式金屬離子之篩選及其在向列相液晶中的不對稱轉譯作用和手性放大
12. N-亞柳胺基酸衍生之掌性氧釩錯合物催化α-羥基苄酯進行不對稱氧化反應及 N-亞柳胺基酸衍生之掌性氧釩錯合物催化靛紅衍生物進行不對稱逆向亨利反應之研究
13. N-亞柳胺基酸衍生之掌性氧釩錯合物催化 β-酮基酯類進行不對稱 1,4-共軛加成反應之研究
14. N-亞柳胺基酸衍生之掌性氧釩錯合物催化 α-重氮酯類行不對稱 N-H 嵌合反應及亞胺化合物行不對稱轉胺化反應之研究
15. 誘導式自組裝生成C4-對稱之氧釩四聚簇狀體應用於篩選金屬陽離子之螢光感測器
 
* *