|
(1) Russell, P. J. iGenetics: A Molecular Approach. 3rd Edition 2010, Benjamin Cummings (2) Gerhard, K., Sabine, L., and Gunter F. Semiautomated Microtiter Plate Assay for Monitoring Peptidyl Prolyl cis/trans Isomerase Activity in Normal and Pathological Human Sera. Clinical Chemistry 1998, 44:3, 502-508. (3) Fischer, G. and Aumuller, T. Regulation of Peptide Bond cis/trans Isomerization by Enzyme Catalysis and Its Implication in Physiological Processes. Reviews of Physiology, Biochemistry and Pharmacology 2003, 148, 105-150. (4) Yaffe, M. B., Schutkowsk, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J.-U., Xu, J., Kuang, J., Kirschner, M. W., and Fischer, G. Sequence-specific and Phosphorylation-dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 1997, 278, 1957-1960. (5) Zoldak, G., Aumuller, T., Lucke, C., Hritz, J., Oostenbrink, C., Fischer, G., and Schmid, F. X. A Library of Fluorescent Peptides for Exploring the Substrate Specificities of Prolyl Isomerases. Biochemistry 2009, 48, 10423-10436. (6) Bayer, E., Goettsch, S., Mueller, J. W., Griewel, B., Guiberman, E., Mayr, L. M., and Bayer, P. Structural Analysis of the Mitotic Regulator hPin1 in Solution: Insights into Domain Architecture and Substrate Binding. The Journal of Biological Chemistry 2003, 278, 26183-26193. (7) Zhang, M., Wang, X. J., Chen, X., Bowman, M. E., Luo, Y., Noel, J. P., Ellington, A. D., Etzkorn, F. A., and Zhang, Y. Structural and Kinetic Analysis of Prolyl-isomerization/phosphorylation Cross-talk in the CTD Code. ACS Chemical Biology 2012, 7, 1462-1470. (8) Yeh, E. S. and Means, A. R. PIN1, the Cell Cycle and Cancer. Nature Reviews Cancer 2007, 7, 381-388. (9) Lim, A. Z. and Wendell A. L. Converging on Proline: the Mechanism of WW Domain Peptide Recognition. Nature Structural Biology 2000, 7, 611-613. (10) Rama R., Kun P. L., Tony H., and Joseph P. N. Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent. Cell 1997, 89, 875-886. (11) Liou, Y. C., Zhou, Z., and Lu, K. P. Prolyl Isomerase Pin1 as A Molecular Switch to Determine the Fate of Phosphoproteins. Trends in Biochemical Sciences 2011, 36, 501-514. (12) Johansson, M. Investigation of hPin1 Mediated Phosphorylation Dependency in Degradation Control of c-Myc Onoprotein. Master' Thesis, Linköping University, Linköping, Sweden. 2012. (13) Yaffe, M. B. Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 1997, 278, 1957-1960. (14) Theuerkorn, M., Fischer, G.,and Schiene-Fischer, C. Prolyl cis/trans Isomerase Signalling Pathways in Cancer. Current Opinion in Pharmacology 2011, 11, 281-287. (15) Cozzone, A. J. Protein Phosphorylation in Prokaryotes. Annual Review of Microbiology 1988, 42, 97-125. (16) Kun, P. L., Steven. D. H., and Tony, H. A Human Peptidyl–prolyl Isomerase Essential for Regulation of Mitosis. Nature 1996, 380, 544-547. (17) Gustavo A., D. W., Gerburg W., Anna, F., Rile, L., Janusz, S., Thomas, M. W,.Kun, P. L.,and Lere, B. The Prolyl Isomerase Pin1 Is a Novel Prognostic Marker in Human Prostate Cancer. Cancer Research 2003, 63, 6244-6251. (18) Chen, S. Y., Wulf, G., Zhou, X. Z., Rubin, M. A., Lu, K. P.,and Balk, S. P. Activation of Beta-catenin Signaling in Prostate Cancer by Peptidyl-prolyl Isomerase Pin1-mediated Abrogation of the Androgen Receptor-beta-catenin Interaction. Molecular and Cellular Biology 2006, 26, 929-939. (19) Kuramochi, J., Arai, T., Ikeda, S., Kumagai, J., Uetake, H.,and Sugihara, K. High Pin1 Expression Is Associated with Tumor Progression in Colorectal Cancer. Journal of Surgical Oncology 2006, 94, 155-160. (20) Martin B., Jormay, L., Lucia, P.,and Kun, P. L. Pin1 in Alzheimer’s Disease: Multiple Substrates, One Regulatory Mechanism? Biochimica et Biophysica Acta 2007, 1772, 422-429. (21) Bulbarelli, A., Lonati, E., Cazzaniga, E., Gregori, M.,and Masserini, M. Pin1 Affects Tau Phosphorylation in Response to Abeta Oligomers. Molecular and Cellular Neurosciences 2009, 42, 75-80. (22) Min, S. H., Cho, J. S., Oh, J. H., Shim, S. B., Hwang, D. Y., Lee, S. H., Jee, S. W., Lim, H. J., Kim, M. Y., Sheen, Y. Y., Lee, S. H.,and Kim, Y. K. Tau and GSK3beta Dephosphorylations Are Required for Regulating Pin1 Phosphorylation. Neurochemical Research 2005, 30, 955-961. (23) Xiao, Z. Z., Oliver, K., Andreas, W., Pei-Jung, L.,Minhui, S.,Gerlind, S., Gerhard, K., Michael, S., Gunter, F., and Kun, P. L. Pin1-Dependent Prolyl Isomerization Regulates Dephosphorylation of Cdc25C and Tau Proteins. Molecular Cell 2000, 6, 873-883. (24) Pei-Jung, L., Gerburg, W., Xiao, Z. Z., Peter, D.,and Kun, P, L. The Prolyl Isomerase Pin1 Restores the Function of Alzheimer-associated Phosphorylated Tau Protein. Nature 1999, 399, 784-788. (25) Pastorino, L., Sun, A., Lu, P. J., Zhou, X. Z., Balastik, M., Finn, G., Wulf, G., Lim, J., Li, S. H., Li, X., Xia, W., Nicholson, L. K.,and Lu, K. P. The Prolyl Isomerase Pin1 Regulates Amyloid Precursor Protein Processing and Amyloid-beta Production. Nature 2006, 440, 528-534. (26) Mike, S., Anne, B., Xiao, Z. Z., Minhui, S., Ulf, R., Jens-Ullrich, R., Kun, P. L.,and Gunter, F. Role of Phosphorylation in Determining the Backbone Dynamics of the Serine/Threonine-Proline Motif and Pin1 Substrate Recognition. Biochemistry 1998, 37, 5566-5575. (27) Stefan, F., Strphen. M., and Martin K. A Mechanism for Rotamase Catalysis by the FK506 Binding Protein (FKBP). Biochemistry 1993, 32, 13830-13837. (28) Richard, K. H. and Ross L. S. Mechanistic Studies of Peptidyl Prolyl Cis-Trans Isomerase: Evidence for Catalysis by Distortion. Biochemistry 1990, 29, 1684-1689. (29) Ana, Y. M.-C., Ashley, B. M., Matthew, D. M., Guoyan ,G. X., Brendan, J. M., Xingsheng, W., Jeffrey, W. P., and Etzkorn, F. A. Kinetic Isotope Effects Support the Twisted Amide Mechanism of Pin1 Peptidyl-Prolyl Isomerase. Biochemistry 2013, 52, 7707-7713. (30) Uday, M. and J. C. Use of Isotopes for Studying Reaction Mechanisms: 3. Secondary Kinetic Isotope Effect. Resonance 1997, 2, 18-25. (31) Wang, J.-Z., Lin, T., Zhu, G.-F.,and Du, L.-F. Stability of Pin1 as Revealed by Thermal and Spectroscopic Studies. Journal of Molecular Structure 2010, 975, 310-316. (32) Wang, J. Z., Xi, L., Zhu, G. F.,,Han, Y. G., Luo, Y., Wang, M.,and Du, L. F. The Acidic pH-induced Structural Changes in Pin1 as Revealed by Spectral Methodologies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2012, 98, 199-206. (33) Choudhary, A., Pua, K. H.,and Raines, R. T. Quantum Mechanical Origin of the Conformational Preferences of 4-Thiaproline and Its S-oxides. Amino Acids 2011, 41, 181-186. (34) Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Ferraris, G., Gilli, G., Zanotti, G., Monaco, G.,and Catti, M. Fundamentals of Crystallography, 2002, Oxford University Press (35) Hinderaker, M. P.and Raines, R. T. An Electronic Effect on Protein Structure. Protein Science 2003, 12, 1188-1194. (36) Benzi, C., Improta, R., Scalmani, G.,and Barone, V. Quantum Mechanical Study of the Conformational Behavior of Proline and 4R-hydroxyproline Dipeptide Analogues in Vacuum and in Aqueous Solution. Journal of Computational Chemistry 2002, 23, 341-350. (37) Improta, R., Benzi, C., and Barone, V. Understanding the Role of Stereoelectronic Effects in Determining Collagen Stability. 1. A Quantum Mechanical Study of Proline, Hydroxyproline, and Fluoroproline Dipeptide Analogues in Aqueous Solution. Journal of the American Chemical Society 2001, 123, 12568-12577. (38) Taylor, C. M., Hardre, R., and Edwards, P. J. The Impact of Pyrrolidine Hydroxylation on the Conformation of Proline-containing Peptides. The Journal of Organic Chemistry 2005, 70, 1306-1315. (39) Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85, 2149-2154. (40) 張湘戎. 體抑素胜太分子內雙硫鍵建構之研究. 中原大學化學研究所碩士學位論文 2003. (41) Berova, N., Nakanishi, K.,and Woody, R. . Circular Dichroism: Principles and Applications. 2000. (42) Fischer,G., H, B., and C, M. Determination of Enzymatic Catalysis for the cis-trans Isomerization of Peptide Binding in Proline-containing Peptides. Biomedica Biochimica Acta 1984, 43, 1101-1111. (43) Gunter, F., Brigitte, W.-l., Kurt, L., Thomas, K.,and Franz, X. S. Cyclophilin and Peptidyl-prolyl cis-trans Isomerase are Probably Identical Proteins. Nature 1989, 337, 476-478. (44) Xiaodong, J. W., Bailing, X., Ashley, B. M., Freda, K. N., and Etzkorn, F. A. Conformationally Locked Isostere of PhosphoSer-cis-Pro Inhibits Pin1 23-Fold Better than PhosphoSer-trans-Pro Isostere. Journal of the American Chemical Society 2004, 126, 15533-15542. (45) James, L. K., Petr, K., Vimal, K., Esther, C.-B., and Daniel, H. R. Determination of Kinetic Constants for Peptidyl prolyl cis-trans Isomerases by An Improved Spectrophotometric Assay. Biochemistry 1991, 30, 6127-6134. (46) Mueller, J. W., Link, N. M., Matena, A., Hoppstock, L., Ruppel, A., Bayer, P., and Blankenfeldt, W. Crystallographic Proof for An Extended Hydrogen-bonding Network in Small Prolyl Isomerases. Journal of the American Chemical Society 2011, 133, 20096-20099. (47) Xu, G. G., Zhang, Y., Mercedes-Camacho, A. Y.,and Etzkorn, F. A. A Reduced-amide Inhibitor of Pin1 Binds in A Conformation Resembling A Twisted-amide Transition State. Biochemistry 2011, 50, 9545-9550. (48) Menten, L. M. and Miss, M. L. The Kinetics of Invertase Action. Biochem Z 1913, 49, 333-369. (49) Richard, K. H. and Ross, L. S. Substrate Specificities of the Peptidyl Prolyl Cis-Trans Isomerase Activities of Cyclophilin and FK-506 Binding Protein: Evidence for the Existence of a Family of Distinct Enzymes. Biochemistry 1990, 29, 3813-3816. (50) Parthasarathy, M. and W. C. J. J. Sensitivity of Circular Dichroism to Protein Tertiary Structure Class. Nature 1983, 305, 831-832. (51) Melanie, L., Bailey, B. H. S., Christopher J. B., and David, W. L. The Dual Histidine Motif in the Active Site of Pin1 Has a Structural Rather than Catalytic Role. Biochemistry 2008, 47, 11481-11489. (52) Wilson, K. A., Bouchard, J. J., Peng, J. W. Interdomain Interactions Support Interdomain Communication in Human Pin1. Biochemistry 2013, 52, 6968-6981. (53) James, L., Kofron, P. K., Vimal, K., Gerd, G., Stephen, W. F.,and Daniel, H. R. Lithium Chloride Perturbation of Cis-Trans Peptide Bond Equilibria: Effect on Conformational Equilibria in Cyclosporin A and on Time-Dependent Inhibition of Cyclophilin. Journal of the American Chemical Society 1992, 114, 2670-2675. (54) 張巧欣. 利用實驗與計算探討脯胺酸衍生物對聚脯胺酸以及β-hairpin 結構之影響. 清華大學化學研究所碩士學位論文 2013.
|