帳號:guest(3.145.173.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳淑華
作者(外文):Wu, Hsu-Hua
論文名稱(中文):溶液酸鹼值對人類 Pin1 穩定性及含脯胺酸衍生物之基質對其酵素活性效率影響
論文名稱(外文):Study of Human Pin1: pH-dependent Stability and the Impacts of 4-Substituted Proline Derivatives on the Catalytic Efficiency
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
口試委員(中文):吳淑褓
陳青諭
洪嘉呈
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023564
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:順反異構酶脯胺酸催化效率胜肽
外文關鍵詞:pin1catalytic efficiencyproline
相關次數:
  • 推薦推薦:0
  • 點閱點閱:208
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
人類 Pin1 蛋白質是細胞分裂的調節蛋白之一,可調控含有被磷酸化的絲胺酸或者蘇胺酸與脯胺酸之間的胜肽鍵進行順反異構,進而影響體內蛋白質的折疊,目前發現阿茲海默症的成因之一與 hPin1 的功能調控有關,為了避免疾病的發生或是設計其治療藥物,我們必須先了解酵素催化的反應機構。
我們利用大腸桿菌表現的方式大量得到目標蛋白,並且用溫和的純化方法保持其活性。在 CD 變溫實驗當中,得知 hPin1 在 pH 7-8 之間具有良好的結構穩定性,且隨著降低水溶液的 pH 值,會改變蛋白質的二級結構與穩定性。將基質 Ac-ApTPY-pNA 上的脯胺酸用 (2S,4S)-hydroproline (hyp),(2S,4R)-
hydroproline (Hyp),(2S,4S)-fluoroproline (flp),(2S,4R)-fluoroproline (Flp) ,(2S,4S)-methoxyproline (mop),(2S,4R)-methoxyproline (Mop),(2S)-4,4-difluroproline (Dfp),(2S)-4-ketoproline (Kep) 這些非天然的胺基酸衍生物進行取代,利用 Protease-
coupled assay 觀察構形對基質結構與 hPin1 催化效率的影響。從結果上來看,在 LiCl/TFE 的環境中,用 Kep 取代的胜肽其 pT-Xaa 胜肽鍵 cis 式比例提高;而用Hyp、hyp 與 Dfp 取代的胜肽鍵 cis 式比例降低。而 hPin1 對用 flp、Flp、Mop 與 Dfp 取代的基質有較好的催化效率,對用 Kep 取代的基質其催化效率在本研究中所使用受質中表現最差,而其他變異基質則與原胜肽無明顯變化。由此可以看出立體電子效應並不是造成不同環構形對 pT-Xaa 之間之胜肽鍵順反式的比例,與影響到 hPin1 催化效率的主要原因。
目前對於 hPin1 催化反應的途徑仍不清楚,但是從我們的研究當中發現藉由修飾脯胺酸 Cγ 位置對 hPin1 催化效率有明顯的影響且其原因與立體障礙和疏水作用力有關,希望此結果有助於進一步了解該酵素的催化反應機構,並在設計藥物上有所幫助。
Human Pin1, a peptidyl-prolyl isomerase catalyzes the cis/trans isomerization of specifically phosphothreonine/phosphoserine-proline peptide bond, and it is used as molecular switches to regulate cell cycle progression to affect biological activity of protein. Recently it has been found that Alzheimer’s disease may be associated with the dysfunction of human Pin1. In order to avoid the occurrence of the disease or design the drug for treatment, we have to understand the isomerization mechanism of hPin1.
We used E.coli expression system to prepare hPin1
, and maintained its bioactivity by a moderate purification method. Thermal unfolding measurements indicate hPin1 has a high conformational stability between pH 7 and pH 8, and lowering the pH value will destabilize the protein. We replaced the proline residue in the substrate Ac-ApTPY-pNA with (2S,4S)-hydroproline (hyp), (2S,4R)-hydroproline
(Hyp), (2S,4S)-fluoroproline (flp), (2S,4R)-fluoroproline (Flp), (2S,4S)-methoxy-proline (mop), (2S,4R)- methoxyproline (Mop), (2S)-4,4-difluroproline (Dfp), (2S)-4-ketoproline (Kep) to change the ring pucker preference and study the consequence on catalytic efficiency of hPin1. As determined by a protease-coupled assay, replacement of proline with Kep induces a deceased cis content. The cis content of the Hyp, hyp, Dfp peptide was increase upon replacing proline into these derivatives. hPin1 exhibits a better catalytic efficiency toward the flp, Flp, Mop, Dfp peptide than the Pro peptide, and has a lowest catalytic efficiency to the Kep-containing peptide. The results show that a pre-organized ring pucker may not be the key factor contributing to the cis/trans isomer ratio of the peptide and the catalytic efficiency of hPin1.
Although the details of the hPin1 catalytic mechanism of cis/trans isomerization is not yet clear, we find that the impacts of the 4-substituded proline derivatives on the catalytic efficiency of hPin1 may be related to steric and hydrophobic effects. Our results may be useful for understanding the catalytic mechanism and the substrate specificity of hPin1.
謝誌 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 蛋白質簡介 1
1.2 肽基脯胺酸順反異構酶 (PPIase) 簡介 2
1.3 Human Pin1 介紹 4
1.4 立體電子效應 (stereoelectronic effect) 介紹 13
1.5 固相胜肽合成法介紹 17
1.5.1 將第一個胺基酸接在樹脂上 (attachment of the first amino acid to resin) 19
1.5.2 去保護 (deprotection) 19
1.5.3 活化 (activation) 20
1.5.4 耦合 (coupling) 20
1.5.5 切除 (cleavage) 21
1.6 圓二色光譜儀 (Circular dichroism;CD) 21
1.7 Protease-coupled Assay 介紹 25
1.8 研究動機 27
第二章 實驗部分 28
2.1 儀器型號 28
2.2 實驗藥品 30
2.3 proline 衍生物的合成 34
2.3.1 化合物的合成 37
2.4 Tyrosine-nitroaniline resin 的合成 42
2.4.1 化合物的合成 42
2.5 胜肽的合成、純化與鑑定 44
2.5.1 基質合成 44
2.5.2 固態合成實驗步驟 46
2.6 蛋白質表現 47
2.6.1 轉型 (transform) 47
2.6.2 大腸桿菌菌落之培養 47
2.6.3 小量培養與大量培養 48
2.6.4 獲取 hPin1 蛋白質與純化 50
2.6.5 以凝血脢Thrombin來切斷GST-hPin1 51
2.7 光譜測量 53
2.7.1 UV 光譜測量濃度 53
2.7.2 CD 光譜測量 53
2.7.3 活性實驗測量 54
2.8 光譜數據分析 55
2.8.1 CD 變溫實驗之數據整理 55
2.8.2 活性實驗之數據處理 56
第三章 結果與討論 60
3.1 hPin1 蛋白質在大腸桿菌之表現 60
3.1.1 異丙基硫化半乳糖 (IPTG) 對大腸桿菌之誘導作用 60
3.1.2 hPin1 蛋白質的大量表現 61
3.1.3 hPin1 蛋白質純化與分離 62
3.2 hPin1 在不同 pH 值水溶液中 CD 量測探討 65
3.3 hPin1 變溫實驗探討 67
3.4 以 Protease-coupled assay 進行 hPin1 酵素催化效率測試 71
第四章 結論 81
第五章 參考文獻 82
第六章 附錄 89
(1) Russell, P. J. iGenetics: A Molecular Approach. 3rd Edition 2010, Benjamin Cummings
(2) Gerhard, K., Sabine, L., and Gunter F. Semiautomated Microtiter Plate Assay for Monitoring Peptidyl Prolyl cis/trans Isomerase Activity in Normal and Pathological Human Sera. Clinical Chemistry 1998, 44:3, 502-508.
(3) Fischer, G. and Aumuller, T. Regulation of Peptide Bond cis/trans Isomerization by Enzyme Catalysis and Its Implication in Physiological Processes. Reviews of Physiology, Biochemistry and Pharmacology 2003, 148, 105-150.
(4) Yaffe, M. B., Schutkowsk, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J.-U., Xu, J., Kuang, J., Kirschner, M. W., and Fischer, G. Sequence-specific and Phosphorylation-dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 1997, 278, 1957-1960.
(5) Zoldak, G., Aumuller, T., Lucke, C., Hritz, J., Oostenbrink, C., Fischer, G., and Schmid, F. X. A Library of Fluorescent Peptides for Exploring the Substrate Specificities of Prolyl Isomerases. Biochemistry 2009, 48, 10423-10436.
(6) Bayer, E., Goettsch, S., Mueller, J. W., Griewel, B., Guiberman, E., Mayr, L. M., and Bayer, P. Structural Analysis of the Mitotic Regulator hPin1 in Solution: Insights into Domain Architecture and Substrate Binding. The Journal of Biological Chemistry 2003, 278, 26183-26193.
(7) Zhang, M., Wang, X. J., Chen, X., Bowman, M. E., Luo, Y., Noel, J. P., Ellington, A. D., Etzkorn, F. A., and Zhang, Y. Structural and Kinetic Analysis of Prolyl-isomerization/phosphorylation Cross-talk in the CTD Code. ACS Chemical Biology 2012, 7, 1462-1470.
(8) Yeh, E. S. and Means, A. R. PIN1, the Cell Cycle and Cancer. Nature Reviews Cancer 2007, 7, 381-388.
(9) Lim, A. Z. and Wendell A. L. Converging on Proline: the Mechanism of WW Domain Peptide Recognition. Nature Structural Biology 2000, 7, 611-613.
(10) Rama R., Kun P. L., Tony H., and Joseph P. N. Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition Is Phosphorylation Dependent. Cell 1997, 89, 875-886.
(11) Liou, Y. C., Zhou, Z., and Lu, K. P. Prolyl Isomerase Pin1 as A Molecular Switch to Determine the Fate of Phosphoproteins. Trends in Biochemical Sciences 2011, 36, 501-514.
(12) Johansson, M. Investigation of hPin1 Mediated Phosphorylation Dependency in Degradation Control of c-Myc Onoprotein. Master' Thesis, Linköping University, Linköping, Sweden. 2012.
(13) Yaffe, M. B. Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 1997, 278, 1957-1960.
(14) Theuerkorn, M., Fischer, G.,and Schiene-Fischer, C. Prolyl cis/trans Isomerase Signalling Pathways in Cancer. Current Opinion in Pharmacology 2011, 11, 281-287.
(15) Cozzone, A. J. Protein Phosphorylation in Prokaryotes. Annual Review of Microbiology 1988, 42, 97-125.
(16) Kun, P. L., Steven. D. H., and Tony, H. A Human Peptidyl–prolyl Isomerase Essential for Regulation of Mitosis. Nature 1996, 380, 544-547.
(17) Gustavo A., D. W., Gerburg W., Anna, F., Rile, L., Janusz, S., Thomas, M. W,.Kun, P. L.,and Lere, B. The Prolyl Isomerase Pin1 Is a Novel Prognostic Marker in Human Prostate Cancer. Cancer Research 2003, 63, 6244-6251.
(18) Chen, S. Y., Wulf, G., Zhou, X. Z., Rubin, M. A., Lu, K. P.,and Balk, S. P. Activation of Beta-catenin Signaling in Prostate Cancer by Peptidyl-prolyl Isomerase Pin1-mediated Abrogation of the Androgen Receptor-beta-catenin Interaction. Molecular and Cellular Biology 2006, 26, 929-939.
(19) Kuramochi, J., Arai, T., Ikeda, S., Kumagai, J., Uetake, H.,and Sugihara, K. High Pin1 Expression Is Associated with Tumor Progression in Colorectal Cancer. Journal of Surgical Oncology 2006, 94, 155-160.
(20) Martin B., Jormay, L., Lucia, P.,and Kun, P. L. Pin1 in Alzheimer’s Disease: Multiple Substrates, One Regulatory Mechanism? Biochimica et Biophysica Acta 2007, 1772, 422-429.
(21) Bulbarelli, A., Lonati, E., Cazzaniga, E., Gregori, M.,and Masserini, M. Pin1 Affects Tau Phosphorylation in Response to Abeta Oligomers. Molecular and Cellular Neurosciences 2009, 42, 75-80.
(22) Min, S. H., Cho, J. S., Oh, J. H., Shim, S. B., Hwang, D. Y., Lee, S. H., Jee, S. W., Lim, H. J., Kim, M. Y., Sheen, Y. Y., Lee, S. H.,and Kim, Y. K. Tau and GSK3beta Dephosphorylations Are Required for Regulating Pin1 Phosphorylation. Neurochemical Research 2005, 30, 955-961.
(23) Xiao, Z. Z., Oliver, K., Andreas, W., Pei-Jung, L.,Minhui, S.,Gerlind, S., Gerhard, K., Michael, S., Gunter, F., and Kun, P. L. Pin1-Dependent Prolyl Isomerization Regulates Dephosphorylation of Cdc25C and Tau Proteins. Molecular Cell 2000, 6, 873-883.
(24) Pei-Jung, L., Gerburg, W., Xiao, Z. Z., Peter, D.,and Kun, P, L. The Prolyl Isomerase Pin1 Restores the Function of Alzheimer-associated Phosphorylated Tau Protein. Nature 1999, 399, 784-788.
(25) Pastorino, L., Sun, A., Lu, P. J., Zhou, X. Z., Balastik, M., Finn, G., Wulf, G., Lim, J., Li, S. H., Li, X., Xia, W., Nicholson, L. K.,and Lu, K. P. The Prolyl Isomerase Pin1 Regulates Amyloid Precursor Protein Processing and Amyloid-beta Production. Nature 2006, 440, 528-534.
(26) Mike, S., Anne, B., Xiao, Z. Z., Minhui, S., Ulf, R., Jens-Ullrich, R., Kun, P. L.,and Gunter, F. Role of Phosphorylation in Determining the Backbone Dynamics of the Serine/Threonine-Proline Motif and Pin1 Substrate Recognition. Biochemistry 1998, 37, 5566-5575.
(27) Stefan, F., Strphen. M., and Martin K. A Mechanism for Rotamase Catalysis by the FK506 Binding Protein (FKBP). Biochemistry 1993, 32, 13830-13837.
(28) Richard, K. H. and Ross L. S. Mechanistic Studies of Peptidyl Prolyl Cis-Trans Isomerase: Evidence for Catalysis by Distortion. Biochemistry 1990, 29, 1684-1689.
(29) Ana, Y. M.-C., Ashley, B. M., Matthew, D. M., Guoyan ,G. X., Brendan, J. M., Xingsheng, W., Jeffrey, W. P., and Etzkorn, F. A. Kinetic Isotope Effects Support the Twisted Amide Mechanism of Pin1 Peptidyl-Prolyl Isomerase. Biochemistry 2013, 52, 7707-7713.
(30) Uday, M. and J. C. Use of Isotopes for Studying Reaction Mechanisms: 3. Secondary Kinetic Isotope Effect. Resonance 1997, 2, 18-25.
(31) Wang, J.-Z., Lin, T., Zhu, G.-F.,and Du, L.-F. Stability of Pin1 as Revealed by Thermal and Spectroscopic Studies. Journal of Molecular Structure 2010, 975, 310-316.
(32) Wang, J. Z., Xi, L., Zhu, G. F.,,Han, Y. G., Luo, Y., Wang, M.,and Du, L. F. The Acidic pH-induced Structural Changes in Pin1 as Revealed by Spectral Methodologies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 2012, 98, 199-206.
(33) Choudhary, A., Pua, K. H.,and Raines, R. T. Quantum Mechanical Origin of the Conformational Preferences of 4-Thiaproline and Its S-oxides. Amino Acids 2011, 41, 181-186.
(34) Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Ferraris, G., Gilli, G., Zanotti, G., Monaco, G.,and Catti, M. Fundamentals of Crystallography, 2002, Oxford University Press
(35) Hinderaker, M. P.and Raines, R. T. An Electronic Effect on Protein Structure. Protein Science 2003, 12, 1188-1194.
(36) Benzi, C., Improta, R., Scalmani, G.,and Barone, V. Quantum Mechanical Study of the Conformational Behavior of Proline and 4R-hydroxyproline Dipeptide Analogues in Vacuum and in Aqueous Solution. Journal of Computational Chemistry 2002, 23, 341-350.
(37) Improta, R., Benzi, C., and Barone, V. Understanding the Role of Stereoelectronic Effects in Determining Collagen Stability. 1. A Quantum Mechanical Study of Proline, Hydroxyproline, and Fluoroproline Dipeptide Analogues in Aqueous Solution. Journal of the American Chemical Society 2001, 123, 12568-12577.
(38) Taylor, C. M., Hardre, R., and Edwards, P. J. The Impact of Pyrrolidine Hydroxylation on the Conformation of Proline-containing Peptides. The Journal of Organic Chemistry 2005, 70, 1306-1315.
(39) Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85, 2149-2154.
(40) 張湘戎. 體抑素胜太分子內雙硫鍵建構之研究. 中原大學化學研究所碩士學位論文 2003.
(41) Berova, N., Nakanishi, K.,and Woody, R. . Circular Dichroism: Principles and Applications. 2000.
(42) Fischer,G., H, B., and C, M. Determination of Enzymatic Catalysis for the cis-trans Isomerization of Peptide Binding in Proline-containing Peptides. Biomedica Biochimica Acta 1984, 43, 1101-1111.
(43) Gunter, F., Brigitte, W.-l., Kurt, L., Thomas, K.,and Franz, X. S. Cyclophilin and Peptidyl-prolyl cis-trans Isomerase are Probably Identical Proteins. Nature 1989, 337, 476-478.
(44) Xiaodong, J. W., Bailing, X., Ashley, B. M., Freda, K. N., and Etzkorn, F. A. Conformationally Locked Isostere of PhosphoSer-cis-Pro Inhibits Pin1 23-Fold Better than PhosphoSer-trans-Pro Isostere. Journal of the American Chemical Society 2004, 126, 15533-15542.
(45) James, L. K., Petr, K., Vimal, K., Esther, C.-B., and Daniel, H. R. Determination of Kinetic Constants for Peptidyl prolyl cis-trans Isomerases by An Improved Spectrophotometric Assay. Biochemistry 1991, 30, 6127-6134.
(46) Mueller, J. W., Link, N. M., Matena, A., Hoppstock, L., Ruppel, A., Bayer, P., and Blankenfeldt, W. Crystallographic Proof for An Extended Hydrogen-bonding Network in Small Prolyl Isomerases. Journal of the American Chemical Society 2011, 133, 20096-20099.
(47) Xu, G. G., Zhang, Y., Mercedes-Camacho, A. Y.,and Etzkorn, F. A. A Reduced-amide Inhibitor of Pin1 Binds in A Conformation Resembling A Twisted-amide Transition State. Biochemistry 2011, 50, 9545-9550.
(48) Menten, L. M. and Miss, M. L. The Kinetics of Invertase Action. Biochem Z 1913, 49, 333-369.
(49) Richard, K. H. and Ross, L. S. Substrate Specificities of the Peptidyl Prolyl Cis-Trans Isomerase Activities of Cyclophilin and FK-506 Binding Protein: Evidence for the Existence of a Family of Distinct Enzymes. Biochemistry 1990, 29, 3813-3816.
(50) Parthasarathy, M. and W. C. J. J. Sensitivity of Circular Dichroism to Protein Tertiary Structure Class. Nature 1983, 305, 831-832.
(51) Melanie, L., Bailey, B. H. S., Christopher J. B., and David, W. L. The Dual Histidine Motif in the Active Site of Pin1 Has a Structural Rather than Catalytic Role. Biochemistry 2008, 47, 11481-11489.
(52) Wilson, K. A., Bouchard, J. J., Peng, J. W. Interdomain Interactions Support Interdomain Communication in Human Pin1. Biochemistry 2013, 52, 6968-6981.
(53) James, L., Kofron, P. K., Vimal, K., Gerd, G., Stephen, W. F.,and Daniel, H. R. Lithium Chloride Perturbation of Cis-Trans Peptide Bond Equilibria: Effect on Conformational Equilibria in Cyclosporin A and on Time-Dependent Inhibition of Cyclophilin. Journal of the American Chemical Society 1992, 114, 2670-2675.
(54) 張巧欣. 利用實驗與計算探討脯胺酸衍生物對聚脯胺酸以及β-hairpin 結構之影響. 清華大學化學研究所碩士學位論文 2013.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *