|
參考文獻 1. Hanahan, D.; Weinberg, Robert A., Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674. 2. Wong, M. S.; Sidik, S. M.; Mahmud, R.; Stanslas, J., Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin. Exp. Pharmacol. Physiol. 2013, 40, 307-319. 3. Rambaruth, N. D. S.; Dwek, M. V., Cell surface glycan–lectin interactions in tumor metastasis. Acta Histochem. 2011, 113, 591-600. 4. Kris, M. G.; Natale, R. B.; Herbst, R. S.; Lynch, T. J.; Kay, A. C.; et al., Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer: A randomized trial. JAMA 2003, 290, 2149-2158. 5. Patyna, S.; Laird, A. D.; Mendel, D. B.; O'Farrell, A.-M.; Liang, C.; et al., SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol. Cancer Ther. 2006, 5, 1774-1782. 6. Hoeben, A.; Landuyt, B.; Highley, M. S.; Wildiers, H.; Van Oosterom, A. T.; et al., Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549-580. 7. Apte, S. M.; Fan, D.; Killion, J. J.; Fidler, I. J., Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma. Clin. Cancer. Res. 2004, 10, 897-908. 8. Fong, T. A. T.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; et al., SU5416 Is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99-106. 9. Patarroyo, M.; Tryggvason, K.; Virtanen, I., Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol. 2002, 12, 197-207. 10. Ardini, E.; Sporchia, B.; Pollegioni, L.; Modugno, M.; Ghirelli, C.; et al., Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res. 2002, 62, 1321-1325. 11. Ricart, A. D.; Tolcher, A. W.; Liu, G.; Holen, K.; Schwartz, G.; et al., Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin. Cancer. Res. 2008, 14, 7924-7929. 12. Melisi, D.; Troiani, T.; Damiano, V.; Tortora, G.; Ciardiello, F., Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments. Endocr. Relat. Cancer 2004, 11, 51-68. 13. Liu, P.; Cheng, H.; Roberts, T. M.; Zhao, J. J., Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627-644. 14. Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8- phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 1994, 269, 5241-5248. 15. Boehle, A.; Kurdow, R.; Boenicke, L.; Schniewind, B.; Faendrich, F.; Dohrmann, P.; Kalthoff, H., Wortmannin inhibits growth of human non-small-cell lung cancer in vitro and in vivo. Langenbecks Arch. Surg. 2002, 387, 234-239. 16. Rakic, J. M.; Maillard, C.; Jost, M.; Bajou, K.; Masson, V.; et al., Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell. Mol. Life Sci. 2003, 60, 463-473. 17. Barber, C. G.; Dickinson, R. P.; Fish, P. V., Selective urokinase-type plasminogen activator (uPA) inhibitors. Part 3: 1-Isoquinolinylguanidines. Bioorg. Med. Chem. Lett. 2004, 14, 3227-3230. 18. Ertongur, S.; Lang, S.; Mack, B.; Wosikowski, K.; Muehlenweg, B.; et al., Inhibition of the invasion capacity of carcinoma cells by WX-UK1, a novel synthetic inhibitor of the urokinase-type plasminogen activator system. Int. J. Cancer 2004, 110, 815-824. 19. Kobayashi, H.; Suzuki, M.; Kanayama, N.; Nishida, T.; Takigawa, M.; et al., Suppression of urokinase receptor expression by bikunin is associated with inhibition of upstream targets of extracellular signal-regulated kinase-dependent cascade. Eur. J. Biochem. 2002, 269, 3945-3957. 20. Stamenkovic, I., Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 2000, 10, 415-433. 21. Hu, J.; Van den Steen, P. E.; Sang, Q.-X. A.; Opdenakker, G., Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 2007, 6, 480-498. 22. Mohamed, M. M.; Sloane, B. F., Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 2006, 6, 764-775. 23. Gocheva, V.; Joyce, J. A., Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007, 6, 60-64. 24. Bell-McGuinn, K. M.; Garfall, A. L.; Bogyo, M.; Hanahan, D.; Joyce, J. A., Inhibition of cysteine cathepsin protease Aactivity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 2007, 67, 7378-7385. 25. Palermo, C.; Joyce, J. A., Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci. 2008, 29, 22-28. 26. Ghosh, P.; Dahms, N. M.; Kornfeld, S., Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 2003, 4, 202-213. 27. Im, E.; Kazlauskas, A., The role of cathepsins in ocular physiology and pathology. Exp. Eye Res. 2007, 84, 383-388. 28. Turk, V.; Turk, B.; Turk, D., Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001, 20, 4629-4633. 29. Fonović, M.; Turk, B., Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta. 2014, 1840, 2560-2570. 30. Yixuan, Y.; Kiat, L. S.; Yee, C. L.; Huiyin, L.; Yunhao, C.; et al., Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J. Proteome Res. 2010, 9, 4767-4778. 31. Vasiljeva, O.; Papazoglou, A.; Krüger, A.; Brodoefel, H.; Korovin, M.; et al., Tumor cell–derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242-5250. 32. Sevenich, L.; Schurigt, U.; Sachse, K.; Gajda, M.; Werner, F.; et al., Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl. Acad. Sci. 2010, 107, 2497-2502. 33. Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; et al., Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006, 20, 543-556. 34. Brömme, D.; Bonneau, P. R.; Lachance, P.; Wiederanders, B.; Kirschke, H.; et al., Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J. Biol. Chem. 1993, 268, 4832-4838. 35. Kirschke, H.; Schmidt, I.; Wiederanders, B., Cathepsin S. the cysteine proteinase from bovine lymphoid tissue is distinct from cathepsin L (EC 3.4.22.15). Biochem. J. 1986, 240, 455-459. 36. Nakagawa, T. Y.; Brissette, W. H.; Lira, P. D.; Griffiths, R. J.; Petrushova, N.; et al., Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 1999, 10, 207-217. 37. Turkenburg, J. P.; Lamers, M. B. A. C.; Brzozowski, A. M.; Wright, L. M.; Hubbard, R. E.; et al., Structure of a Cys25→Ser mutant of human cathepsin S. Acta Crystallogr., Sect D: Biol. Crystallogr. 2002, 58, 451-455. 38. Yu, J.; Butelman, E. R.; Woods, J. H.; Chait, B. T.; Kreek, M. J., Dynorphin a (1–8) analog, E-2078, is stable in human and rhesus monkey blood. J. Pharmacol. Exp. Ther. 1997, 280, 1147-1151. 39. Chang, W. S. W.; Wu, H. R.; Yeh, C. T.; Wu, C. W.; Chang, J. Y.; Lysosomal cysteine proteinase cathepsin S as a potential target for anti-cancer therapy. J. Cancer. Mol. 2007, 3, 5-14. 40. Kobayashi, K. S.; van den Elsen, P. J., NLRC5: a key regulator of MHC class I-dependent immune responses. Nat. Rev. Immunol. 2012, 12, 813-820. 41. Yasuda, Y.; Kaleta, J.; Brömme, D., The role of cathepsins in osteoporosis and arthritis: Rationale for the design of new therapeutics. Adv. Drug Del. Rev. 2005, 57, 973-993. 42. Fernández, P. L.; Farré, X.; Nadal, A.; Fernández, E.; Peiró, N.; et al., Expression of cathepsins B and S in the progression of prostate carcinoma. Int. J. Cancer 2001, 95, 51-55. 43. Kos, J.; Sekirnik, A.; Kopitar, G.; Cimerman, N.; Kayser, K.; et al., Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis. Br. J. Cancer 2001, 85, 1193-1200. 44. Flannery, T.; Gibson, D.; Mirakhur, M.; McQuaid, S.; Greenan, C.; et al., The clinical significance of cathepsin S expression in human astrocytomas. Am. J. Pathol. 2003, 163, 175-182. 45. Menard, R.; Carriere, J.; Laflamme, P.; Plouffe, C.; Khouri, H. E.; et al., Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 1991, 30, 8924-8928. 46. Markt, P.; McGoohan, C.; Walker, B.; Kirchmair, J.; Feldmann, C.; et al., Discovery of novel cathepsin S inhibitors by pharmacophore-based virtual high-throughput screening. J. Chem. Inf. Model. 2008, 48, 1693-1705. 47. 王信傑,國立清華大學分子與細胞生物研究所 碩士論文,2009. 48. Pauly, T. A.; Sulea, T.; Ammirati, M.; Sivaraman, J.; Danley, D. E.; et al., Specificity determinants of human cathepsin S revealed by crystal structures of complexes. Biochemistry 2003, 42, 3203-3213. 49. Irie, O.; Ehara, T.; Iwasaki, A.; Yokokawa, F.; Sakaki, J.; et al., Discovery of selective and nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3959-3962. 50. Ayesa, S.; Lindquist, C.; Agback, T.; Benkestock, K.; Classon, B.; et al., Solid-phase parallel synthesis and SAR of 4-amidofuran-3-one inhibitors of cathepsin S: effect of sulfonamides P3 substituents on potency and selectivity. Biorg. Med. Chem. 2009, 17, 1307-1324. 51. Lee-Dutra, A.; Wiener, D. K.; Sun, S., Cathepsin S inhibitors: 2004-2010. Expert Opin. Ther. Pat. 2011, 21, 311-337. 52. Palmer, J. T.; Rasnick, D.; Klaus, J. L.; Bromme, D., Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995, 38, 3193-3196. 53. Riese, R. J.; Wolf, P. R.; Brömme, D.; Natkin, L. R.; Villadangos, J. A.; et al., Essential role for cathepsin S in MHC Class II–associated invariant chain processing and peptide loading. Immunity 1996, 4, 357-366. 54. Biroc, S. L.; Gay, S.; Hummel, K.; Magill, C.; Palmer, J. T.; et al., Cysteine protease activity is up-regulated in inflamed ankle joints of rats with adjuvant-induced arthritis and decreases with in vivo administration of a vinyl sulfone cysteine protease inhibitor. Arthritis Rheum. 2001, 44, 703-711. 55. Cywin, C. L.; Firestone, R. A.; McNeil, D. W.; Grygon, C. A.; Crane, K. M.; et al., The design of potent hydrazones and disulfides as cathepsin S inhibitors. Biorg. Med. Chem. 2003, 11, 733-740. 56. Aldous, D. J.; Leroy V.; Thurairatnam, S.; Timm, A. P.; Novel keto-oxadiazole derivatives as cathepsin inhibitors. WO 2005040142. May 6, 2005. 57. Schudok M.; Wagner M.; Bauer A.; Kohlmann A.; Spirocyclic nitriles as protease inhibitors. CA2653662, December 6, 2007. 58. Gauthier, J. Y.; Black, W. C.; Courchesne, I.; Cromlish, W.; Desmarais, S.; et al., The identification of potent, selective, and bioavailable cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4929-4933. 59. Bethel, P. A.; Gerhardt, S.; Jones, E. V.; Kenny, P. W.; Karoutchi, G. I.; et al., Design of selective cathepsin inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 4622-4625. 60. Clissold, C.; Hardick D.; Miah, S.; Nilsson, M.; Pelcman, M.; et al., C-5 substituted furanone dipeptide cathepsin S inhibitor WO2005082876. September 9, 2005. 61. Maryanoff, B. E.; Costanzo, M. J., Inhibitors of proteases and amide hydrolases that employ an α-ketoheterocycle as a key enabling functionality. Biorg. Med. Chem. 2008, 16, 1562-1595. 62. Palmer, J. T.; Hirschbein, B. L.; Cheung, H.; McCarter, J.; Janc, J. W.; et al., Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 2909-2914. 63. Alper, P. B.; Chatterjee, A.; Liu, Hong.; Mutnick, D.; Tully, D. C., Compounds and compositions as cathepsin S inhibitors. WO2005107464. November 11, 2005. 64. Li, Z.; Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani, K.; et al., Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1993, 36, 3472-3480. 65. Otto, H.-H.; Schirmeister, T., Cysteine proteases and their inhibitors. Chem. Rev. 1997, 97, 133-172. 66. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; et al., Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J. Med. Chem. 1994, 37, 2918-2929. 67. Tavares, F. X.; Boncek, V.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; et al., Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin K. J. Med. Chem. 2003, 47, 588-599. 68. Bartus, R. T.; Baker, K. L.; Heiser, A. D.; Sawyer, S. D.; Dean, R. L.; et al., Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J. Cereb. Blood Flow Metab. 1994, 14, 537-544. 69. Elie, B. T.; Gocheva, V.; Shree, T.; Dalrymple, S. A.; Holsinger, L. J.; et al., Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 2010, 92, 1618-1624. 70. Votta, B. J.; Levy, M. A.; Badger, A.; Bradbeer, J.; Dodds, R. A.; et al., Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Miner. Res. 1997, 12, 1396-1406. 71. Mehta, S.; Singh, C.; Plata, K. B.; Chanda, P. K.; Paul, A.; et al., β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob. Agents Chemother. 2012, 56, 6192-6200. 72. Boschetti, C. E.; Mata, E. G.; Mascaretti, O. A.; Cricco, J. A.; Coux, G.; et al., Synthesis and porcine pancreatic elastase inhibitory evaluation of 6α-(sulfonyl)oxy-and 6α-chloropenicillanate sulfone esters and 3α-(acyloxy)methyl-6α-chloropenam sulfones. Bioorg. Med. Chem. Lett. 1995, 5, 2033-2036. 73. Zhou, N. E.; Guo, D.; Thomas, G.; Reddy, A. V. N.; Kaleta, J.; et al., 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 139-141. 74. Ameriks, M. K.; Axe, F. U.; Bembenek, S. D.; Edwards, J. P.; Gu, Y.; et al., Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements. Bioorg. Med. Chem. Lett. 2009, 19, 6131-6134. 75. Ameriks, M. K.; Bembenek, S. D.; Burdett, M. T.; Choong, I. C.; Edwards, J. P.; et al., Diazinones as P2 replacements for pyrazole-based cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4060-4064. 76. Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; et al., 4-Amino-2-cyanopyrimidines: Novel scaffold for nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4642-4646. 77. Cai, J.; Bennett, D. J.; Rankovic, Z.; Dempster, M.; Fradera, X.; et al., 2-Phenyl-9H-purine-6-carbonitrile derivatives as selective cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4447-4450. 78. Cai, J.; Baugh, M.; Black, D.; Long, C.; Jonathan Bennett, D.; et al., 6-Phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile as cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4350-4354. 79. Wood, W. J. L.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A., Substrate activity screening: a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J. Am. Chem. Soc. 2005, 127, 15521-15527. 80. Moss, N.; Xiong, Z.; Burke, M.; Cogan, D.; Gao, D. A.; et al., Exploration of cathepsin S inhibitors characterized by a triazole P1–P2 amide replacement. Bioorg. Med. Chem. Lett. 2012, 22, 7189-7193. 81. Grauer, A.; König, B., Peptidomimetics-a versatile route to biologically active compounds. Eur. J. Org. Chem. 2009, 2009, 5099-5111. 82. Graham L. Patrick, An Introduction to Medicinal Chemistry, 4th ed. 83. Patani, G. A.; LaVoie, E. J., Bioisosterism: a rational approach in drug design. Chem. Rev. 1996, 96, 3147-3176. 84. Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; et al., Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem. Int. Ed. 2008, 47, 2595-2599. 85. Di Gioia, M. L.; Leggio, A.; Le Pera, A.; Liguori, A.; Napoli, A.; et al., “One-pot” methylation of N-nosyl-α-amino acid methyl esters with diazomethane and their coupling To prepare N-methyl dipeptides. J. Org. Chem. 2003, 68, 7416-7421. 86. Aurelio, L.; Box, J. S.; Brownlee, R. T. C.; Hughes, A. B.; Sleebs, M. M., An Efficient Synthesis of N-Methyl Amino Acids by Way of Intermediate 5-Oxazolidinones. J. Org. Chem. 2003, 68, 2652-2667. 87. Biron, E.; Kessler, H., Convenient synthesis of N-methylamino acids compatible with fmoc solid-phase peptide synthesis. J. Org. Chem. 2005, 70, 5183-5189. 88. Biron, E.; Chatterjee, J.; Kessler, H., Optimized selective N-methylation of peptides on solid support. J. Pept. Sci. 2006, 12, 213-219. 89. Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H., Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 1992, 114, 10646-10647. 90. Lim, H. S.; Muralidhar Reddy, M.; Xiao, X.; Wilson, J.; Wilson, R.; et al., Rapid identification of improved protein ligands using peptoid microarrays. Bioorg. Med. Chem. Lett. 2009, 19, 3866-3869. 91. Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; et al., β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Helv. Chim. Acta. 1996, 79, 913-941. 92. Ruan, F.; Chen, Y.; Itoh, K.; Sasaki, T.; Hopkins, P. B., Synthesis of peptides containing unnatural, metal-ligating residues: aminodiacetic acid as a peptide side chain. J. Org. Chem. 1991, 56, 4347-4354. 93. Hu, X.; Nguyen, K. T.; Verlinde, C. L. M. J.; Hol, W. G. J.; Pei, D., Structure-based design of a macrocyclic inhibitor for peptide deformylase. J. Med. Chem. 2003, 46, 3771-3774. 94. Stachel, S. J.; Coburn, C. A.; Sankaranarayanan, S.; Price, E. A.; Pietrak, B. L.; et al., Macrocyclic inhibitors of β-secretase: functional activity in an animal model. J. Med. Chem. 2006, 49, 6147-6150. 95. Wang, X.Y.; Huang, X. Y.; Wang, T.; Yu, X. Q., Synthesis of small cyclic peptides containing disulfide bonds. Arkivoc 2006, xi, 148-154. 96. Chatterjee, J.; Laufer, B.; Kessler, H., Synthesis of N-methylated cyclic peptides. Nat. Protocols 2012, 7, 432-444. 97. Dömling, A.; Ugi, I., Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168-3210. 98. Owens, T. D.; Araldi, G.-L.; Nutt, R. F.; Semple, J. E., Concise total synthesis of the prolyl endopeptidase inhibitor eurystatin A via a novel Passerini reaction–deprotection–acyl migration strategy. Tetrahedron Lett. 2001, 42, 6271-6274. 99. Lescop, C.; Herzner, H.; Siendt, H.; Bolliger, R.; Henneböhle, M.; et al., Novel cell-penetrating α-keto-amide calpain inhibitors as potential treatment for muscular dystrophy. Bioorg. Med. Chem. Lett. 2005, 15, 5176-5181. 100. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599. 101. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128-1137. 102. Stetler-Stevenson, W. G.; Aznavoorian, S.; Liotta, L. A., Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 1993, 9, 541-573. 103. Coussens, L. M.; Fingleton, B.; Matrisian, L. M., Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science 2002, 295, 2387-2392. 104. Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin, C. L.; Morwick, T.; et al., Design and synthesis of dipeptide nitriles as reversible and potent cathepsin S inhibitors. J. Med. Chem. 2002, 45, 5471-5482. 105. 吳柔禎,國立清華大學化學研究所 碩士論文,2011. 106. 陳若君,國立清華大學化學研究所 博士論文,2009. 107. Han, W.; Jiang, X.; Hu, Z.; Wasserman, Z. R.; Decicco, C. P., Investigation of glycine α-ketoamide HCV NS3 protease inhibitors: Effect of carboxylic acid isosteres. Bioorg. Med. Chem. Lett. 2005, 15, 3487-3490. 108. Patterson, A. W.; Wood, W. J. L.; Hornsby, M.; Lesley, S.; Spraggon, G.; et al., Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 2006, 49, 6298-6307. 109. Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J., An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett 1996, 1996, 521-522. 110. Pietruszka, J.; Witt, A., Synthesis of the Bestmann-Ohira reagent. Synthesis 2006, 2006, 4266-4268. 111. Jaschinski, T.; Hiersemann, M., {1,6}-Transannular catalytic asymmetric gosteli–claisen rearrangement. Org. Lett. 2012, 14, 4114-4117. 112. Rodriguez, M.; Llinares, M.; Doulut, S.; Heitz, A.; Martinez, J., A facile synthesis of chiral N-protected β-amino alcohols. Tetrahedron Lett. 1991, 32, 923-926. 113. Bekkali, Y.; Thomson, D. S.; Betageri, R.; Emmanuel, M. J.; Hao, M.-H.; et al., Identification of a novel class of succinyl-nitrile-based Cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2465-2469. 114. Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B., Synthetic preparation of N-methyl-α-amino acids. Chem. Rev. 2004, 104, 5823-5846. 115. Lee, B.-Y.; Park, S. R.; Jeon, H. B.; Kim, K. S., A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett. 2006, 47, 5105-5109. 116. Fabre, B.; Filipiak, K.; Zapico, J. M.; Diaz, N.; Carbajo, R. J.; et al., Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Org. Biomol. Chem. 2013, 11, 6623-6641. 117. Chacko, S.; Ramapanicker, R., Synthesis of γ-oxo γ-aryl and γ-aryl α-amino acids from aromatic aldehydes and serine. Eur. J. Org. Chem. 2012, 2012, 7120-7128. 118. Reid, R. C.; Abbenante, G.; Taylor, S. M.; Fairlie, D. P., A convergent solution-phase synthesis of the macrocycle Ac-Phe- [Orn-Pro-d-Cha-Trp-Arg], a potent new antiinflammatory drug. The J. Org. Chem. 2003, 68, 4464-4471.
|