帳號:guest(3.147.48.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂易諺
論文名稱(中文):最佳化α-酮醯胺結構藉以發展抗腫瘤轉移之組織蛋白酶S抑制劑
論文名稱(外文):Optimization of α-Ketoamide Structure as Cathepsin S Inhibitor for Development of Therapeutic Agent against Tumor Metastasis
指導教授(中文):林俊成
口試委員(中文):張文祥
謝興邦
林俊成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023563
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:221
中文關鍵詞:組織蛋白酶Sα-酮醯胺抑制劑半胱胺酸蛋白酶抗癌藥物腫瘤轉移
外文關鍵詞:cathepsin sinhibitorcysteine proteasealpha-ketoamideanticancertumor metastasis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  組織蛋白酶S (Cathepsin S)屬於溶酶體半胱胺酸蛋白酶,在人體中主要的作用是降解第二型組織相容性複合體中的恆定鏈,幫助抗原呈現過程。最近研究指出,在某些癌症或具有侵襲及轉移的腫瘤細胞中,組織蛋白酶S會被過度表達並證實與腫瘤細胞之侵襲及轉移有密切的關係。為能開發治療癌症的新方法,本實驗室致力於合成α-酮醯胺化合物作為組織蛋白酶S抑制劑,用以對抗腫瘤細胞轉移;先前實驗室經藥物篩選後所得到的化合物RJW-58 ,能成功地抑制老鼠中腫瘤細胞的轉移,並提高老鼠的存活率。然而RJW-58卻因水溶性(97.9 μg/mL)及半衰期(4.6 hr)不佳而限制其發展性,本論文之主要工作即為解決上述兩個問題,藉由前導藥物RJW-58之結構為基礎,設計並合成含有羧酸、氮-甲基化基團及三氮唑環三種類型的抑制劑;在本論文所合成出的組織蛋白酶S抑制劑中,修飾羧酸的化合物89b將抑制常數保持在10 nM之內,並成功提升水溶性(256.7 μg/mL)及半衰期(6.8 hr)。
  Cathepsin S (CTSS), a lysosomal cysteine protease, plays a major role in antigen presentation through degradation of invariant chain associated with the major histocompatibility class II complex (MHC II). Recent studies have demonstrated that CTSS is highly expressed in malignant cancer cells and shows a direct correlation with cancer cells invasion, migration, and metastasis. To achieve a new therapeutic approach for cancer treatment, our laboratory have developed a series of non-cytotoxic α-ketoamides as potent CTSS inhibitors. Through the CTSS inhibition activity screening, we found RJW-58 showed obvious inhibition of tumor cell progression and increase of the survival rate of cancer transferred mice. However, because of poor solubility (97.9 μg/mL) and short half-life (4.6 hr), the development of RJW-58 had been limit. In this thesis, the main work can be summarized as finding the solution to questions as mentioned above. We synthesized three kinds of derivatives based on the structure of RJW-58, including the compounds which contain a carboxylic group, N-methylated moiety, respectively. Among the inhibitors of Cathepsin S we synthesized, compound 89b which contained a carboxylic group maintain inhibition constant in 10nM and show better water solubility (256.7 μg/mL) and half-life (6.8 hr).
目錄
目錄………………………………………………………………………I
圖表及流程………………………………………………………………………V
縮寫表………………………………………………………………………XI
第一章、緒論………………………………………………………………………1
1.1 前言………………………………………………………………………1
1.2 惡性腫瘤細胞之轉移………………………………………………………………………1
1.3 以腫瘤轉移為標靶之藥物治療………………………………………………………………………3
1.3.1 抑制受體酪氨酸激酶………………………………………………………………………3
1.3.2 抗血管新生………………………………………………………………………4
1.3.3 抗附著分子………………………………………………………………………4
1.3.4 抗腫瘤轉移訊號………………………………………………………………………5
1.3.5 抑制尿激酶型血纖維蛋白溶解酶原活化因子…………………………………………………………………6
1.3.6 抑制水解蛋白酶………………………………………………………………………6
1.4組織蛋白酶………………………………………………………………………7
1.5 組織蛋白酶S………………………………………………………………………10
1.5.1 組織蛋白酶S結構………………………………………………………………………10
1.5.2 組織蛋白酶S之生理作用………………………………………………………………………11
1.5.3組織蛋白酶S與癌症之關聯 ………………………………………………………………………12
1.5.4組織蛋白酶S水解機制………………………………………………………………………13
1.6 組織蛋白酶S抑制劑………………………………………………………………………14
1.6.1 設計組織蛋白酶S抑制劑………………………………………………………………………14
1.6.2 抑制劑彈頭………………………………………………………………………20
1.6.2.1 不可逆型抑制劑………………………………………………………………………20
1.6.2.2 可逆型抑制劑………………………………………………………………………22
1.6.2.2.1氰基類………………………………………………………………………22
1.6.2.2.2 脂肪性酮類………………………………………………………………………24
1.6.2.2.3 α-酮雜環類………………………………………………………………………25
1.6.2.2.4 α-酮醯胺類………………………………………………………………………26
1.6.2.2.5 醛類抑制劑………………………………………………………………………26
1.6.2.2.6 β-內醯胺基團………………………………………………………………………27
1.6.3 非胜肽骨架抑制劑………………………………………………………………………28
1.6.3.1 吡唑骨架………………………………………………………………………28
1.6.3.2 嘧啶骨架………………………………………………………………………29
1.6.3.3 嘌呤骨架………………………………………………………………………30
1.6.3.4 三氮唑骨架………………………………………………………………………31
1.7 類肽學………………………………………………………………………31
1.7.1 生物電子等量取代………………………………………………………………………32
1.7.2 N-甲基化胜肽………………………………………………………………………32
1.7.3 類肽………………………………………………………………………33
1.7.4 β-胜肽………………………………………………………………………34
1.7.5 環化胜肽………………………………………………………………………34
1.8 重要合成反應介紹………………………………………………………………………36
1.8.1 Passerini 反應………………………………………………………………………36
1.8.2 點擊反應………………………………………………………………………37
1.9 組織蛋白酶 S抑制常數測試………………………………………………………………………38
第二章、研究動機與構想………………………………………………39
第三章、結果與討論……………………………………………………42
3.1 合成P3位置帶負電荷基團之α-酮醯胺胜肽抑制劑……………………………………………………42
3.2 探討P3位置修飾之結構與活性關係……………………………………………………49
3.3 合成非肽類抑制劑化合物……………………………………………………52
3.3.1 以三氮唑環取代醯胺鍵……………………………………………………52
3.3.2 以N-甲基化醯胺鍵取代醯胺鍵……………………………………………………60
3.3.3利用點擊反應修飾含水溶性之基團……………………………………………………68
3.4 水溶性量化……………………………………………………72
3.5 藥物動力學實驗結果討論……………………………………………………75
3.6 結論……………………………………………………77
第四章、實驗部分……………………………………………………80
4.1一般實驗方法……………………………………………………80
4.2組織蛋白酶S抑制活性測試……………………………………………………81
4.3實驗步驟及光譜資料……………………………………………………82
參考文獻………………………………………………………………121
附錄……………………………………………………………………132
參考文獻
1. Hanahan, D.; Weinberg, Robert A., Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674.
2. Wong, M. S.; Sidik, S. M.; Mahmud, R.; Stanslas, J., Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin. Exp. Pharmacol. Physiol. 2013, 40, 307-319.
3. Rambaruth, N. D. S.; Dwek, M. V., Cell surface glycan–lectin interactions in tumor metastasis. Acta Histochem. 2011, 113, 591-600.
4. Kris, M. G.; Natale, R. B.; Herbst, R. S.; Lynch, T. J.; Kay, A. C.; et al., Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer: A randomized trial. JAMA 2003, 290, 2149-2158.
5. Patyna, S.; Laird, A. D.; Mendel, D. B.; O'Farrell, A.-M.; Liang, C.; et al., SU14813: a novel multiple receptor tyrosine kinase inhibitor with potent antiangiogenic and antitumor activity. Mol. Cancer Ther. 2006, 5, 1774-1782.
6. Hoeben, A.; Landuyt, B.; Highley, M. S.; Wildiers, H.; Van Oosterom, A. T.; et al., Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549-580.
7. Apte, S. M.; Fan, D.; Killion, J. J.; Fidler, I. J., Targeting the platelet-derived growth factor receptor in antivascular therapy for human ovarian carcinoma. Clin. Cancer. Res. 2004, 10, 897-908.
8. Fong, T. A. T.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; et al., SU5416 Is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99-106.
9. Patarroyo, M.; Tryggvason, K.; Virtanen, I., Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol. 2002, 12, 197-207.
10. Ardini, E.; Sporchia, B.; Pollegioni, L.; Modugno, M.; Ghirelli, C.; et al., Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res. 2002, 62, 1321-1325.
11. Ricart, A. D.; Tolcher, A. W.; Liu, G.; Holen, K.; Schwartz, G.; et al., Volociximab, a chimeric monoclonal antibody that specifically binds α5β1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin. Cancer. Res. 2008, 14, 7924-7929.
12. Melisi, D.; Troiani, T.; Damiano, V.; Tortora, G.; Ciardiello, F., Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments. Endocr. Relat. Cancer 2004, 11, 51-68.
13. Liu, P.; Cheng, H.; Roberts, T. M.; Zhao, J. J., Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627-644.
14. Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F., A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8- phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 1994, 269, 5241-5248.
15. Boehle, A.; Kurdow, R.; Boenicke, L.; Schniewind, B.; Faendrich, F.; Dohrmann, P.; Kalthoff, H., Wortmannin inhibits growth of human non-small-cell lung cancer in vitro and in vivo. Langenbecks Arch. Surg. 2002, 387, 234-239.
16. Rakic, J. M.; Maillard, C.; Jost, M.; Bajou, K.; Masson, V.; et al., Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell. Mol. Life Sci. 2003, 60, 463-473.
17. Barber, C. G.; Dickinson, R. P.; Fish, P. V., Selective urokinase-type plasminogen activator (uPA) inhibitors. Part 3: 1-Isoquinolinylguanidines. Bioorg. Med. Chem. Lett. 2004, 14, 3227-3230.
18. Ertongur, S.; Lang, S.; Mack, B.; Wosikowski, K.; Muehlenweg, B.; et al., Inhibition of the invasion capacity of carcinoma cells by WX-UK1, a novel synthetic inhibitor of the urokinase-type plasminogen activator system. Int. J. Cancer 2004, 110, 815-824.
19. Kobayashi, H.; Suzuki, M.; Kanayama, N.; Nishida, T.; Takigawa, M.; et al., Suppression of urokinase receptor expression by bikunin is associated with inhibition of upstream targets of extracellular signal-regulated kinase-dependent cascade. Eur. J. Biochem. 2002, 269, 3945-3957.
20. Stamenkovic, I., Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 2000, 10, 415-433.
21. Hu, J.; Van den Steen, P. E.; Sang, Q.-X. A.; Opdenakker, G., Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 2007, 6, 480-498.
22. Mohamed, M. M.; Sloane, B. F., Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 2006, 6, 764-775.
23. Gocheva, V.; Joyce, J. A., Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007, 6, 60-64.
24. Bell-McGuinn, K. M.; Garfall, A. L.; Bogyo, M.; Hanahan, D.; Joyce, J. A., Inhibition of cysteine cathepsin protease Aactivity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 2007, 67, 7378-7385.
25. Palermo, C.; Joyce, J. A., Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci. 2008, 29, 22-28.
26. Ghosh, P.; Dahms, N. M.; Kornfeld, S., Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 2003, 4, 202-213.
27. Im, E.; Kazlauskas, A., The role of cathepsins in ocular physiology and pathology. Exp. Eye Res. 2007, 84, 383-388.
28. Turk, V.; Turk, B.; Turk, D., Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001, 20, 4629-4633.
29. Fonović, M.; Turk, B., Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta. 2014, 1840, 2560-2570.
30. Yixuan, Y.; Kiat, L. S.; Yee, C. L.; Huiyin, L.; Yunhao, C.; et al., Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J. Proteome Res. 2010, 9, 4767-4778.
31. Vasiljeva, O.; Papazoglou, A.; Krüger, A.; Brodoefel, H.; Korovin, M.; et al., Tumor cell–derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242-5250.
32. Sevenich, L.; Schurigt, U.; Sachse, K.; Gajda, M.; Werner, F.; et al., Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc. Natl. Acad. Sci. 2010, 107, 2497-2502.
33. Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; et al., Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006, 20, 543-556.
34. Brömme, D.; Bonneau, P. R.; Lachance, P.; Wiederanders, B.; Kirschke, H.; et al., Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J. Biol. Chem. 1993, 268, 4832-4838.
35. Kirschke, H.; Schmidt, I.; Wiederanders, B., Cathepsin S. the cysteine proteinase from bovine lymphoid tissue is distinct from cathepsin L (EC 3.4.22.15). Biochem. J. 1986, 240, 455-459.
36. Nakagawa, T. Y.; Brissette, W. H.; Lira, P. D.; Griffiths, R. J.; Petrushova, N.; et al., Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 1999, 10, 207-217.
37. Turkenburg, J. P.; Lamers, M. B. A. C.; Brzozowski, A. M.; Wright, L. M.; Hubbard, R. E.; et al., Structure of a Cys25→Ser mutant of human cathepsin S. Acta Crystallogr., Sect D: Biol. Crystallogr. 2002, 58, 451-455.
38. Yu, J.; Butelman, E. R.; Woods, J. H.; Chait, B. T.; Kreek, M. J., Dynorphin a (1–8) analog, E-2078, is stable in human and rhesus monkey blood. J. Pharmacol. Exp. Ther. 1997, 280, 1147-1151.
39. Chang, W. S. W.; Wu, H. R.; Yeh, C. T.; Wu, C. W.; Chang, J. Y.; Lysosomal cysteine proteinase cathepsin S as a potential target for anti-cancer therapy. J. Cancer. Mol. 2007, 3, 5-14.
40. Kobayashi, K. S.; van den Elsen, P. J., NLRC5: a key regulator of MHC class I-dependent immune responses. Nat. Rev. Immunol. 2012, 12, 813-820.
41. Yasuda, Y.; Kaleta, J.; Brömme, D., The role of cathepsins in osteoporosis and arthritis: Rationale for the design of new therapeutics. Adv. Drug Del. Rev. 2005, 57, 973-993.
42. Fernández, P. L.; Farré, X.; Nadal, A.; Fernández, E.; Peiró, N.; et al., Expression of cathepsins B and S in the progression of prostate carcinoma. Int. J. Cancer 2001, 95, 51-55.
43. Kos, J.; Sekirnik, A.; Kopitar, G.; Cimerman, N.; Kayser, K.; et al., Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis. Br. J. Cancer 2001, 85, 1193-1200.
44. Flannery, T.; Gibson, D.; Mirakhur, M.; McQuaid, S.; Greenan, C.; et al., The clinical significance of cathepsin S expression in human astrocytomas. Am. J. Pathol. 2003, 163, 175-182.
45. Menard, R.; Carriere, J.; Laflamme, P.; Plouffe, C.; Khouri, H. E.; et al., Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 1991, 30, 8924-8928.
46. Markt, P.; McGoohan, C.; Walker, B.; Kirchmair, J.; Feldmann, C.; et al., Discovery of novel cathepsin S inhibitors by pharmacophore-based virtual high-throughput screening. J. Chem. Inf. Model. 2008, 48, 1693-1705.
47. 王信傑,國立清華大學分子與細胞生物研究所 碩士論文,2009.
48. Pauly, T. A.; Sulea, T.; Ammirati, M.; Sivaraman, J.; Danley, D. E.; et al., Specificity determinants of human cathepsin S revealed by crystal structures of complexes. Biochemistry 2003, 42, 3203-3213.
49. Irie, O.; Ehara, T.; Iwasaki, A.; Yokokawa, F.; Sakaki, J.; et al., Discovery of selective and nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3959-3962.
50. Ayesa, S.; Lindquist, C.; Agback, T.; Benkestock, K.; Classon, B.; et al., Solid-phase parallel synthesis and SAR of 4-amidofuran-3-one inhibitors of cathepsin S: effect of sulfonamides P3 substituents on potency and selectivity. Biorg. Med. Chem. 2009, 17, 1307-1324.
51. Lee-Dutra, A.; Wiener, D. K.; Sun, S., Cathepsin S inhibitors: 2004-2010. Expert Opin. Ther. Pat. 2011, 21, 311-337.
52. Palmer, J. T.; Rasnick, D.; Klaus, J. L.; Bromme, D., Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995, 38, 3193-3196.
53. Riese, R. J.; Wolf, P. R.; Brömme, D.; Natkin, L. R.; Villadangos, J. A.; et al., Essential role for cathepsin S in MHC Class II–associated invariant chain processing and peptide loading. Immunity 1996, 4, 357-366.
54. Biroc, S. L.; Gay, S.; Hummel, K.; Magill, C.; Palmer, J. T.; et al., Cysteine protease activity is up-regulated in inflamed ankle joints of rats with adjuvant-induced arthritis and decreases with in vivo administration of a vinyl sulfone cysteine protease inhibitor. Arthritis Rheum. 2001, 44, 703-711.
55. Cywin, C. L.; Firestone, R. A.; McNeil, D. W.; Grygon, C. A.; Crane, K. M.; et al., The design of potent hydrazones and disulfides as cathepsin S inhibitors. Biorg. Med. Chem. 2003, 11, 733-740.
56. Aldous, D. J.; Leroy V.; Thurairatnam, S.; Timm, A. P.; Novel keto-oxadiazole derivatives as cathepsin inhibitors. WO 2005040142. May 6, 2005.
57. Schudok M.; Wagner M.; Bauer A.; Kohlmann A.; Spirocyclic nitriles as protease inhibitors. CA2653662, December 6, 2007.
58. Gauthier, J. Y.; Black, W. C.; Courchesne, I.; Cromlish, W.; Desmarais, S.; et al., The identification of potent, selective, and bioavailable cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4929-4933.
59. Bethel, P. A.; Gerhardt, S.; Jones, E. V.; Kenny, P. W.; Karoutchi, G. I.; et al., Design of selective cathepsin inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 4622-4625.
60. Clissold, C.; Hardick D.; Miah, S.; Nilsson, M.; Pelcman, M.; et al., C-5 substituted furanone dipeptide cathepsin S inhibitor WO2005082876. September 9, 2005.
61. Maryanoff, B. E.; Costanzo, M. J., Inhibitors of proteases and amide hydrolases that employ an α-ketoheterocycle as a key enabling functionality. Biorg. Med. Chem. 2008, 16, 1562-1595.
62. Palmer, J. T.; Hirschbein, B. L.; Cheung, H.; McCarter, J.; Janc, J. W.; et al., Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 2909-2914.
63. Alper, P. B.; Chatterjee, A.; Liu, Hong.; Mutnick, D.; Tully, D. C., Compounds and compositions as cathepsin S inhibitors. WO2005107464. November 11, 2005.
64. Li, Z.; Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani, K.; et al., Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1993, 36, 3472-3480.
65. Otto, H.-H.; Schirmeister, T., Cysteine proteases and their inhibitors. Chem. Rev. 1997, 97, 133-172.
66. Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; et al., Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J. Med. Chem. 1994, 37, 2918-2929.
67. Tavares, F. X.; Boncek, V.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; et al., Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin K. J. Med. Chem. 2003, 47, 588-599.
68. Bartus, R. T.; Baker, K. L.; Heiser, A. D.; Sawyer, S. D.; Dean, R. L.; et al., Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J. Cereb. Blood Flow Metab. 1994, 14, 537-544.
69. Elie, B. T.; Gocheva, V.; Shree, T.; Dalrymple, S. A.; Holsinger, L. J.; et al., Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 2010, 92, 1618-1624.
70. Votta, B. J.; Levy, M. A.; Badger, A.; Bradbeer, J.; Dodds, R. A.; et al., Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Miner. Res. 1997, 12, 1396-1406.
71. Mehta, S.; Singh, C.; Plata, K. B.; Chanda, P. K.; Paul, A.; et al., β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob. Agents Chemother. 2012, 56, 6192-6200.
72. Boschetti, C. E.; Mata, E. G.; Mascaretti, O. A.; Cricco, J. A.; Coux, G.; et al., Synthesis and porcine pancreatic elastase inhibitory evaluation of 6α-(sulfonyl)oxy-and 6α-chloropenicillanate sulfone esters and 3α-(acyloxy)methyl-6α-chloropenam sulfones. Bioorg. Med. Chem. Lett. 1995, 5, 2033-2036.
73. Zhou, N. E.; Guo, D.; Thomas, G.; Reddy, A. V. N.; Kaleta, J.; et al., 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 139-141.
74. Ameriks, M. K.; Axe, F. U.; Bembenek, S. D.; Edwards, J. P.; Gu, Y.; et al., Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements. Bioorg. Med. Chem. Lett. 2009, 19, 6131-6134.
75. Ameriks, M. K.; Bembenek, S. D.; Burdett, M. T.; Choong, I. C.; Edwards, J. P.; et al., Diazinones as P2 replacements for pyrazole-based cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4060-4064.
76. Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; et al., 4-Amino-2-cyanopyrimidines: Novel scaffold for nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4642-4646.
77. Cai, J.; Bennett, D. J.; Rankovic, Z.; Dempster, M.; Fradera, X.; et al., 2-Phenyl-9H-purine-6-carbonitrile derivatives as selective cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4447-4450.
78. Cai, J.; Baugh, M.; Black, D.; Long, C.; Jonathan Bennett, D.; et al., 6-Phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile as cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4350-4354.
79. Wood, W. J. L.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A., Substrate activity screening:  a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J. Am. Chem. Soc. 2005, 127, 15521-15527.
80. Moss, N.; Xiong, Z.; Burke, M.; Cogan, D.; Gao, D. A.; et al., Exploration of cathepsin S inhibitors characterized by a triazole P1–P2 amide replacement. Bioorg. Med. Chem. Lett. 2012, 22, 7189-7193.
81. Grauer, A.; König, B., Peptidomimetics-a versatile route to biologically active compounds. Eur. J. Org. Chem. 2009, 2009, 5099-5111.
82. Graham L. Patrick, An Introduction to Medicinal Chemistry, 4th ed.
83. Patani, G. A.; LaVoie, E. J., Bioisosterism:  a rational approach in drug design. Chem. Rev. 1996, 96, 3147-3176.
84. Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; et al., Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem. Int. Ed. 2008, 47, 2595-2599.
85. Di Gioia, M. L.; Leggio, A.; Le Pera, A.; Liguori, A.; Napoli, A.; et al., “One-pot” methylation of N-nosyl-α-amino acid methyl esters with diazomethane and their coupling To prepare N-methyl dipeptides. J. Org. Chem. 2003, 68, 7416-7421.
86. Aurelio, L.; Box, J. S.; Brownlee, R. T. C.; Hughes, A. B.; Sleebs, M. M., An Efficient Synthesis of N-Methyl Amino Acids by Way of Intermediate 5-Oxazolidinones. J. Org. Chem. 2003, 68, 2652-2667.
87. Biron, E.; Kessler, H., Convenient synthesis of N-methylamino acids compatible with fmoc solid-phase peptide synthesis. J. Org. Chem. 2005, 70, 5183-5189.
88. Biron, E.; Chatterjee, J.; Kessler, H., Optimized selective N-methylation of peptides on solid support. J. Pept. Sci. 2006, 12, 213-219.
89. Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H., Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 1992, 114, 10646-10647.
90. Lim, H. S.; Muralidhar Reddy, M.; Xiao, X.; Wilson, J.; Wilson, R.; et al., Rapid identification of improved protein ligands using peptoid microarrays. Bioorg. Med. Chem. Lett. 2009, 19, 3866-3869.
91. Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; et al., β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Helv. Chim. Acta. 1996, 79, 913-941.
92. Ruan, F.; Chen, Y.; Itoh, K.; Sasaki, T.; Hopkins, P. B., Synthesis of peptides containing unnatural, metal-ligating residues: aminodiacetic acid as a peptide side chain. J. Org. Chem. 1991, 56, 4347-4354.
93. Hu, X.; Nguyen, K. T.; Verlinde, C. L. M. J.; Hol, W. G. J.; Pei, D., Structure-based design of a macrocyclic inhibitor for peptide deformylase. J. Med. Chem. 2003, 46, 3771-3774.
94. Stachel, S. J.; Coburn, C. A.; Sankaranarayanan, S.; Price, E. A.; Pietrak, B. L.; et al., Macrocyclic inhibitors of β-secretase:  functional activity in an animal model. J. Med. Chem. 2006, 49, 6147-6150.
95. Wang, X.Y.; Huang, X. Y.; Wang, T.; Yu, X. Q., Synthesis of small cyclic peptides containing disulfide bonds. Arkivoc 2006, xi, 148-154.
96. Chatterjee, J.; Laufer, B.; Kessler, H., Synthesis of N-methylated cyclic peptides. Nat. Protocols 2012, 7, 432-444.
97. Dömling, A.; Ugi, I., Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168-3210.
98. Owens, T. D.; Araldi, G.-L.; Nutt, R. F.; Semple, J. E., Concise total synthesis of the prolyl endopeptidase inhibitor eurystatin A via a novel Passerini reaction–deprotection–acyl migration strategy. Tetrahedron Lett. 2001, 42, 6271-6274.
99. Lescop, C.; Herzner, H.; Siendt, H.; Bolliger, R.; Henneböhle, M.; et al., Novel cell-penetrating α-keto-amide calpain inhibitors as potential treatment for muscular dystrophy. Bioorg. Med. Chem. Lett. 2005, 15, 5176-5181.
100. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
101. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128-1137.
102. Stetler-Stevenson, W. G.; Aznavoorian, S.; Liotta, L. A., Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 1993, 9, 541-573.
103. Coussens, L. M.; Fingleton, B.; Matrisian, L. M., Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science 2002, 295, 2387-2392.
104. Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin, C. L.; Morwick, T.; et al., Design and synthesis of dipeptide nitriles as reversible and potent cathepsin S inhibitors. J. Med. Chem. 2002, 45, 5471-5482.
105. 吳柔禎,國立清華大學化學研究所 碩士論文,2011.
106. 陳若君,國立清華大學化學研究所 博士論文,2009.
107. Han, W.; Jiang, X.; Hu, Z.; Wasserman, Z. R.; Decicco, C. P., Investigation of glycine α-ketoamide HCV NS3 protease inhibitors: Effect of carboxylic acid isosteres. Bioorg. Med. Chem. Lett. 2005, 15, 3487-3490.
108. Patterson, A. W.; Wood, W. J. L.; Hornsby, M.; Lesley, S.; Spraggon, G.; et al., Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 2006, 49, 6298-6307.
109. Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J., An improved one-pot procedure for the synthesis of alkynes from aldehydes. Synlett 1996, 1996, 521-522.
110. Pietruszka, J.; Witt, A., Synthesis of the Bestmann-Ohira reagent. Synthesis 2006, 2006, 4266-4268.
111. Jaschinski, T.; Hiersemann, M., {1,6}-Transannular catalytic asymmetric gosteli–claisen rearrangement. Org. Lett. 2012, 14, 4114-4117.
112. Rodriguez, M.; Llinares, M.; Doulut, S.; Heitz, A.; Martinez, J., A facile synthesis of chiral N-protected β-amino alcohols. Tetrahedron Lett. 1991, 32, 923-926.
113. Bekkali, Y.; Thomson, D. S.; Betageri, R.; Emmanuel, M. J.; Hao, M.-H.; et al., Identification of a novel class of succinyl-nitrile-based Cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2465-2469.
114. Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B., Synthetic preparation of N-methyl-α-amino acids. Chem. Rev. 2004, 104, 5823-5846.
115. Lee, B.-Y.; Park, S. R.; Jeon, H. B.; Kim, K. S., A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett. 2006, 47, 5105-5109.
116. Fabre, B.; Filipiak, K.; Zapico, J. M.; Diaz, N.; Carbajo, R. J.; et al., Progress towards water-soluble triazole-based selective MMP-2 inhibitors. Org. Biomol. Chem. 2013, 11, 6623-6641.
117. Chacko, S.; Ramapanicker, R., Synthesis of γ-oxo γ-aryl and γ-aryl α-amino acids from aromatic aldehydes and serine. Eur. J. Org. Chem. 2012, 2012, 7120-7128.
118. Reid, R. C.; Abbenante, G.; Taylor, S. M.; Fairlie, D. P., A convergent solution-phase synthesis of the macrocycle Ac-Phe- [Orn-Pro-d-Cha-Trp-Arg], a potent new antiinflammatory drug. The J. Org. Chem. 2003, 68, 4464-4471.

(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *