|
1. (a) Lauer, G. M.; Walker, B. D. Hepatitis C virus infection. N. Engl. J. Med. 2001, 345, 41–52. (b) Huang, Z.; Murray, M. G.; Secrist, J. A. III. Recent development of therapeutics for chronic HCV infection. Antiviral Res. 2006, 71, 351–362. 2. (a) Roingeard, P.; Hourioux, C. Hepatitis C virus core protein, lipid droplets and steatosis. J. Viral Hepat. 2008, 15, 157–164. (b) Deutsch, M.; Hadziyannis, S. J. Old and emerging therapies in chronic hepatitis C: an update. J. Viral Hepat. 2008, 15, 2–11. 3. (a) De Francesco, R.; Tomei, L.; Altamura, S.; Summa, V.; Migliaccio, G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res. 2003, 58, 1–16. (b) Sklan, E. H.; Charuworn, P.; Pang, P. S.; Glenn, J. S. Mechanisms of HCV survival in the host. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 217–277. 4. Pawlotsky, J. M.; Gish, R. G. Future therapies for hepatitis C. Antivir. Ther. 2006, 11, 397–408. 5. Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone derived from a blood borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359–362. 6. Driesel, G.; Wirth, D.; Stark, K.; Baumgarten, R.; Sucker, U.; Schreier, E. Hepatitis C virus (HCV) genotype distribution in German isolates: studies on the sequence variability in the E2 and NS5 region. Arch. Virol. 1994, 139, 379–388. 7. Thomas, B.; Uwe, H.; Klaus, S.; Renate, B.; Hartmut, L.; Eckart, S. Distribution of hepatitis C virus genotypes in German patients with chronic hepatitis C: correlation with clinical and virological parameters. J. Hepatol. 1997, 26, 484–491. 8. Hoofnagle, J. H. Course and outcome of hepatitis C. J. Hepatol. 2002, 36, 21–29. 9. Simmonds, P. Genetic diversity and evolution of hepatitis C virus – 15 years on. J. Gen. Virol. 2004, 85, 3173–3188. 10. Simmonds, P.; Bukh, J.; Combet, C.; Deléage, G.; Enomoto, N.; Feinstone, S.; Halfon, P,; Inchauspé, G.; Kuiken, C.; Maertens, G.; Mizokami, M.; Murphy, D. G.; Okamoto, H.; Pawlotsky, J. M.; Penin, F.; Sablon, E.; Shin-I, T.; Stuyver, L. J.; Thiel, H. J.; Viazov, S.; Weiner, A. J.; Widell, A. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. J. Hepatol. 2005, 42, 962–973. 11. Hirashima, S.; Suzuki, T.; Ishida, T.; Noji, S.; Yata, S.; Ando, I.; Komatsu, M.; Ikeda, S.; Hashimoto, H. Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure–activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J. Med. Chem. 2006, 49, 4721–4736. 12. Di Bisceglie, A. M.; Hoofnagle, J. H. Optimal therapy of hepatitis C. J. Hepatol. 2002, 36, S121–S127. 13. Zein, N. N. Etanercept as an adjuvant to interferon and ribavirin in treatment-naive patients with chronic hepatitis C virus infection: a phase 2 randomized, double-blind, placebo-controlled study. J. Hepatol. 2005, 42, 315–322. 14. Bretner, M. Existing and future therapeutic options for hepatitis C virus infection. Acta Biochim. Pol. 2005, 52, 57–70. 15. Manns, M. P.; Foster, G. R.; Rockstroh, J. K.; Zeuzem, S.; Zoulim, F.; Houghton, M. The way forward in HCV treatment – finding the right path. Nat. Rev. Drug Disc. 2007, 6, 991–1000. 16. Moradpour, D.; Penin, F.; Rice, C. M. Replication of hepatitis C virus. Nat. Rev. Microb. 2007, 5, 453–463. 17. Sklan, E. H.; Charuworn, P.; Pang, P. S.; Glenn, J. S. Mechanisms of HCV survival in the host. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 217–277. 18. Bartenschlager, R. Cytokines and hepatitis C virus replication. Nat. Rev. Drug Disc. 2002, 1, 911–916. 19. Bartenschlager, R.; Cosset F. L.; Lohmann, V. Hepatitis C virus replication cycle. J. Hepatol. 2010, 53, 583–585. 20. Hafsa, A.; Abida, R.; Shahnaz, M.; Yasir, W.; Ali, K.; Javaid, I.; Zahoor, S.; Muhammad, A. Molecular epidemiology of hepatitis C virus genotypes in different geographical regions of Punjab Province in Pakistan and a phylogenetic analysis. Int. J. Infect. Dis. 2013, 17, 247–253. 21. Hiroshi, K.; Kazuhito, Y.; Shin, O.; Kazuhiko, K.; Tatsuhiko, K. RNA-dependent RNA polymerase of hepatitis C virus binds to its coding region RNA stem–loop structure, 5BSL3.2, and its negative strand. J. Gen. Virol. 2010, 91, 1207–1212. 22. Jenny, G. L.; Cynthia, S.; Limin, W.; Yuan, W.; Abhay P. S.; Rathore, S. W.; Boon, H. T.; Liying, T.; Lian, T. C.; Yan’an, H.; Angelia, C.; Shiqin, H.; Wing, K. C.; Kah, H. T.; Jasmine, S. C.; Benjamin, P. C.; David, C. L.; Paul, A. Yee, S. L.; Yin, B. C.; Eng, E O.; Subhash, G. V. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis. 2014, 14, 70730–70733. 23. Xiaowu, P.; Yinhan, G.; Yanfei, Z.; Wenchuan, F.; Xinbin, G. Highly efficient production of a dengue pseudoinfectious virus. Vaccine 2014, 32, 3854–3860. 24. Usa, T.; Chule, T. Latest developments and future directions in dengue vaccines. Ther. Adv. Vaccines 2014, 2(1), 3-9. 25. Kleber, F.; Paula, Machado.; Renato, J.; Ana, A.; Benedito, F. Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiol Immunol 2014, 58, 318–326 26. Onda, A. Y.; Miyagi, K.; Takahara, H.; Kawai-Yamada, M. Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide. Plant Biology 2014, 16, 819–824. 27. Franchetti, P.; Cappellacci, L.; Pasqualini, M.; Grifantini, M.; Lorenzi, T.; Raffaelli, N.; Magni, G. Dinucleoside polyphosphate NAD analogs as potential NMN adenylyltransferase inhibitors. Synthesis and biological evaluation. Nucleosides, Nucleotides Nucleic Acids 2003, 22, 865–868. 28. Hoyle, C. V.; Pintor, J. J. Diadenosine tetraphosphate protects sympathetic terminals from 6-hydroxydopamine-induced degeneration in the eye. Acta Physiol. 2010, 199, 205–210. 29. Vera, R.; Joachim, J.; Hartmut, S. Structure-activity relationships of diadenosine polyphosphates (ApnAs), adenosine polyphospho guanosines (ApnGs) and guanosine polyphospho guanosines (GpnGs) at P2 receptors in the rat mesenteric arterial bed. Br. J. Pharmacol. 2001, 134, 1073–1083. 30. Nicholas A. F.; Brigitte, M.; Stavrou, D. J. The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc. Res. 1999, 42, 15–26. 31. Peter, R.; Meyer, A. J.; Smith, S. E.; Walter, A. Chain-Terminating Dinucleoside Tetraphosphates are Substrates for DNA Polymerization by Human Immunodeficiency Virus Type 1 Reverse Transcriptase with Increased Activity against Thymidine Analogue-Resistant Mutants. Antimicrob. Agents Chemother. 2006, 50, 3607–3614. 32. Marjan, A.; Francesca, C.; Christakis, P.; Anna, K.; Nicola, S. The human adenylate kinase 9 is a nucleoside monoand diphosphate kinase. Biochem. Cell Biol. 2013, 45, 925–931. 33. Christopher, M.; Claire, B.; Marco, D.; Nadège, H.; Karen, H.; Sahar, K.; Karolina, M.; Silvia, M.; Fabrizio, P.; Magdalena, S.; Stanley, C.; Alexander, K.; John, V.; Christophe, V.; Andrea, I.; Leonid, M.; Jan, B. Design, synthesis and biological evaluation of phosphorodiamidate prodrugs of antiviral and anticancer nucleosides. Eur. J. Med. Chem. 2013, 70, 326–340. 34. Steven, J. C.; Ethel, C.; Franck, A.; Maryam, E.; Sheida, A.; Hongwang, Z.; Longhu, Z.; Sebastien, R. L.; Xiao, L.; Lavanya, B.; Jadd, R. S.; Hao, L.; Peng, L.; Chengwei, L.; Jong-Hyun, C, Satish, N. C.; Shaoman, Z.; Judy, M.; Raymond, F. Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Res. 2014, 102, 119–147. 35. De Clercq, E. The design of drugs for HIV and HCV. Nat. Rev. Drug Disc. 2007, 6, 1001–1018. 36. De Francesco, R.; Carfi, A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv. Drug Delivery Rev. 2007, 59, 1242–1262. 37. Galeone, A.; Mayol, L.; Oliviero, G.; Piccialli, G.; Varra, M. Synthesis of a new N1-pentyl analogue of cyclic inosine diphosphate ribose (cIDPR) as a stable potential mimic of cyclic ADP ribose (cADPR). Eur. J. Org. Chem. 2002, 24, 4234–4238. 38. Kalyan, D.; Eddy, A. HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr Opin Virol. 2013, 3, 111–118. 39. Steven, J. C.; Ethel, C.; Franck, A.; Maryam, E.; Sheida, A.; Hongwang, Z.; Longhu, Z.; Sebastien, R. L.; Xiao, L.; Lavanya, B.; Jadd, R. S.; Hao, L.; Peng, L.; Chengwei, L.; Jong-Hyun, C, Satish, N. C.; Shaoman, Z.; Judy, M.; Raymond, F. Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Res. 2014, 102, 119–147. 40. Christal D.; Sohl, R.; Kasiviswanathan, J.; Ugo, P.; Raymond, F.; Schinazi, C.; Copeland, M.; Masanori, B.; Karen, S. Balancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase. Mol. Pharmacol. 2012, 82, 125–133. 41. Rossi, L.; Serafini1, S.; Franchetti, P.; Cappellacci, L.; Fraternale1, A.; Casabianca1, A.; Brandi, G.; Pierigé, F.; Perno, E.; Balestra, U.; Benatti, E.; Millo, M.; Grifantini M. Targeting Nucleotide Dimers Containing Antiviral Nucleosides. Curr. Med. Chem.: Anti-Infect. Agents 2005, 4, 37–54. 42. Pingzu, J.; Weiwei, X.; Yulin, S.; Nengzhi, J.; Huanxiang, L. Understanding the drug resistance mechanism of hepatitis C virus NS5B to PF-00868554 due to mutations of the 423 site: a computational study. Mol. BioSyst. 2014, 10, 767–777. 43. Isabel, N. Resistance to HCV nucleoside analogue inhibitors of hepatitis C virus RNA-dependent RNA polymerase. ScienceDirect 2013, 3, 508–513. 44. Jeremie, G.; Harel, D.; Emi, S.; Patrick, S.; Alan, S. Hepatitis C Viral Kinetics with the Nucleoside Polymerase Inhibitor Mericitabine (RG7128). J. Hepatol. 2012, 55, 1030–0137. 45. Peter, R.; Suaznne, E.; Matsuura, A. G.; Walter, A. S. Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Biochemistry 1998, 95, 13471–13476. 46. Zhinan, J.; Vincent, L.; Han, M.; Kenneth, A.; Klaus, K. NTP-mediated nucleotide excision activity of hepatitis C virus RNA-dependent RNA polymerase. Pans. Org. 2012, 110, 348–357. 47. Rossi, L.; Serafini1, S.; Franchetti, P.; Cappellacci, L.; Fraternale1, A.; Casabianca1, A.; Brandi, G.; Pierigé, F.; Perno, E.; Balestra, U.; Benatti, E.; Millo, M.; Grifantini M. Targeting Nucleotide Dimers Containing Antiviral Nucleosides. Curr. Med. Chem.: Anti-Infect. Agents 2005, 4, 37–54. 48. Peter, R.; Walter, A. Dinucleoside Polyphosphate Inhibitors of Reverse Transcriptase. World Intellectual Property Organization 2006, 133375 A2. 49. Shirokova, A.; Khandazhinskaya, L.; Skoblov, S.; Goryunova, Y.; Beabealashvilli, S.; Krayevsky, A. Modified Dinucleoside Tetraphosphonates, New Potential Inhibitors of HIV Reverse Transcriptase. Nucleosides, Nucleotides Nucleic Acids 2001 , 20, 1033–1036. 50. Benjamin, A.; Jingyang, W. Dinucletide Compound for HCV Infection. World Intellectual Property Organization 2013, 063019 A1. 51. Congrong, N.; Tatiana, T.; Haiying, B.; Yeojin, P.; Darius, B.; Angela, M. L.; Shalini, B.; Jinfa, D.; Wonsuk, C.; Ganapati, R.; Hai-Ren, Z.; Joseph, W.; Li-Quan, W.; Piyun, C.; Adrian, S. R.; Michael, J.; Phillip, A.; Eisuke, M. Metabolic Activation of the Anti-Hepatitis C Virus Nucleotide Prodrug PSI-352938. Antimicrob. Agents Chemother. 2012, 56(7), 3767–3775. 52. Boris, S. E.; Ekaterina, V. E.; Cyrill, S.; Sergey, N.; Balzarini, J.; Erik, D. Nucleic Acids. 111. Antiwiral Activity of Nucleotides and Dinucleoside Phosphates Containing ara-Cytidine. Nucleic Acid Chem. 1967, 10, 777–782. 53. Kaye, P. T.; Musa, M. A. A convenient and improved Baylis–Hillman synthesis of 3-substituted 2H-1-benzopyran-2-ones. Synthesis 2002, 18, 2701–2706. 54. Lee, K. J. A New Synthesis of Methyl 7H-Dibenz[b,g]oxocin-6-carboxylates from Morita-Baylis-Hillman Adducts of 2-Phenoxybenzaldehydes. Synthesis 2011, 3, 377–386. 55. Hwu, Jih Ru; Lin, Shu-Yu; Tsay, Shwu-Chen; Singha, Raghunath; Pal, Benoy Kumar; Leyssen, Pieter; Neyts, Johan. Development of New Sulfur-Containing Conjugated Compounds as Anti-HCV Agents. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 1144–1152. 56. Tomomi, I.; Akira, H.; Hiroyuki, H.; Yoshifumi, K.; Masato, I.; Kiyoshi, N. Phosphorylation of Nucleosides with Phosphorus Oxychloride in Trialkyl Phosphate. Chem. Pharm. Bull. 1995, 43(2), 210–215. 57. Svenja, W.; Chris, M. New and efficient Synthesis of Nucleoside Polyphosphates and Nucleoside Monophosphate Sugars. Nucleic Acids Symp. Ser. 2008, 52, 583–584. 58. Timothy, W.; Abraham, T. I.; Kalman, E. J.; Carston R. W. Synthesis and Biological Activity of Aromatic Amino Acid Phosphoramidates of 5-Fluoro-2'-deoxyuridine and 1-β-Arabinofuranosylcytosine: Evidence of Phosphoramidase Activity. J. Med. Chem. 1996, 39, 4569–4575. 59. Samy, M.; Ahmed, D.; Scott, D. T. Sulfonyl Imidazolium Salts as Reagents for the Rapid and Efficient Synthesis of Nucleoside Polyphosphates and Their Conjugates. Org. Lett. 2012, 14, 402–405. 60. Samy, M.; Ahmed, D.; Scott, D. T. Rapid and efficient synthesis of nucleoside polyphosphates and their conjugates using sulfonyl imidazolium salts. Curr. Protoc. Nucleic Acid Chem. 2012, 13, 1101–1124. 61. Scozzafava, A.; Menabuoni, L.; Mincione, F.; Supuran, C. T. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyamino-polycarboxylate tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties. J. Med. Chem. 2002, 45, 14661476. 62. Kraszni, M.; Banyai, I.; Noszal, B. Determination of conformer-specific partition coefficients in octanol/water systems. J. Med. Chem. 2003, 46, 22412245. 63. Hoyle, V.; Pintor, J. J. Diadenosine tetraphosphate protects sympathetic terminalsfrom 6-hydroxydopamine-induced degeneration in the eye. Acta Physiol. Scand. 2010, 199, 205–210. 64. Cheson, B. D.; Levine, A. M.; Mildvan, D.; Kaplan, L. D.; Wolfe, P.; Rios, A.; Groopman, J. E.; Gill, P.; Volberding, P. A.; Poiesz, B. J.; Gottlieb, M. S.; Holden, H.; Volsky, D. J.; Silver, S. S.; Hawkins, M. J. Suramin Therapy in Aids and Related Disorders - Report of the United-States-Suramin-Working-Group. JAMA, J. Am. Med. Assoc. 1987, 258, 13471351. 65. Nakata, H. Mitogen-activated protein kinase signaling is involved in suramin-induced neurite outgrowth in a neuronal cell line. Biochem. Biophys. Res. Commun. 2007, 355, 842848. 66. Kaur, M.; Reed, E.; Sartor, O.; Dahut, W.; Figg, W. D. Suramin's development: What did we learn? Invest. New Drugs 2002, 20, 209219.
|