帳號:guest(18.191.154.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張佳偉
作者(外文):Chang, Chia-Wei
論文名稱(中文):螢光共軛焦顯微鏡研究顯示BAX蛋白質之膜通透能力與脂質成分息息相關
論文名稱(外文):BAX-induced Membrane Permeabilization Depends Critically on Lipid Compositions: A Confocal Fluorescence Spectroscopy Study
指導教授(中文):江昀緯
指導教授(外文):Chiang, Yun-Wei
口試委員(中文):陳佩燁
王聖凱
江昀緯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023547
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:細胞凋亡粒線體外膜通透心磷脂脂質巨型單層微脂體共軛焦顯微鏡
外文關鍵詞:ApoptosisMOMPBcl-2 familyBaxCardiolipinLipidGUVConfocal microscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:320
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Abstract
Bax is predominantly a cytosolic monomer in healthy cells. Upon receiving
apoptotic signal, it performs a series of biological processes, which include
conformational changes, translocation to mitochondria as well as oligomerization,
consequently leading to the event of mitochondrial outer membrane permeabilization
(MOMP) and then cell death. However, little is known about the molecular basis of
the driving forces that direct the translocation of Bax to bring about the MOMP.
Localization of Bax to the mitochondrial outer membrane is a key step to the
activation ability of Bax to modulate mitochondrial membrane integrity. In this thesis,
we used giant unilamellar vesicle (GUV) along with confocal fluorescence
microscope to investigate how this Bax translocation, upon receipt of apoptotic
signaling, depend on the lipid compositions and properties. The activation of Bax was
induced with the addition of BimBH3 peptides, which is known to be useful to
promote the oligomerization of Bax (o-Bax). This study prepared GUVs of several
different lipid compositions using PC (POPC), PE (POPE), PG (POPG), and CL
(Cardiolipin). Quantitative analyses regarding the membrane permeability and pore
size were obtained by the time-dependent fluorescence intensity observed within
GUVs from three fluorescence probes of different molecular size. In PC-only GUVs,
some leakages due to the associations of Bax with membrane surface could be
observed. The leakages were found to be mostly caused by small pores (> 0.45 nm in
radius), although there existed small number of large pores (> 6 nm) that appeared
transiently during the observations. In GUVs composed of PC/PG, both the membrane
surface association of Bax and the pore permeability were largely abolished. The
charged property of PG, though similar to CL, does not seem to be important. In the
PC-based GUVs containing of PE or CL, stable large pores (> 6 nm) could only be
II
observed in the presence of o-Bax. The membrane permeability and the stability of
the large pores were found to be higher in the PC/CL than in the PC/PE vesicles,
indicating that the greater the negative curvature of the doped lipid is, the greater the
number of the large pores is observed. Collectively, our study indicates that the
formation and stability of large pores, which are essential to the MOMP process,
depend critically on the lipid compositions. Inactive Bax monomers could easily
cause disturbances to membrane surface. The disturbances result in some accidental
breaks for small probes to flow in and, therefore, are considered as a measure of the
membrane surface association of Bax monomers. O-Bax was found to effectively
induce large pores on PC-based GUVs containing either CL or PE but rather than PG.
Nevertheless, only in the presence of CL could the large pores remain stable over a
long time. Our studies demonstrate the importance of the curvature property of
lipids in the MOMP process.
目錄
第一章 緒論..................................................................................................................1
1.1 細胞凋亡(Apoptosis) ................................................................................................ 1
1.2 Bcl-2 (B-cell lymphoma)家族蛋白 .......................................................................... 1
1.3 Bax蛋白質(Bcl-2-associated X protein)與Cardiolipin (CL) .................................. 3
1.4 巨型單層微脂體(Giant Unilamellar Vesicle, GUV) ............................................... 5
1.5 研究動機與目的 ...................................................................................................... 5
第二章 儀器介紹與原理..............................................................................................7
2.1 共軛焦螢光顯微鏡(Confocal Fluorescence Microscopy) ....................................... 7
2.1.1 背景 .................................................................................................................. 7
2.1.2 現今的共軛焦顯微鏡 ...................................................................................... 7
2.1.3 螢光 .................................................................................................................. 7
2.1.4 螢光顯微鏡 ...................................................................................................... 9
2.1.5 共軛焦顯微鏡 .................................................................................................. 9
2.1.6 共軛焦顯微鏡的運作 .................................................................................... 11
2.1.7 三維影像的建構 ............................................................................................ 12
2.1.8 總結 ................................................................................................................ 12
第三章 樣品製備、儀器測量方法與藥品................................................................13
3.1 實驗流程 ................................................................................................................ 13
3.1.1 蛋白質的表現與純化 .................................................................................... 13
3.1.2 巨型單層微脂體(GUV)的製作 ..................................................................... 15
3.1.3 樣品配製 ........................................................................................................ 17
3.2 儀器測量方法 ........................................................................................................ 18
3.3 藥品與儀器 ............................................................................................................ 20
3.3.1 實驗藥品 ........................................................................................................ 20
3.3.2 實驗儀器 ........................................................................................................ 21
第四章 結果與討論....................................................................................................22
4.1 研究策略 ................................................................................................................ 22
VI
4.2 利用小分子螢光染料5(6)-CF觀察Bax對於GUV,產生之滲入現象 ............ 22
4.2.1 測試不同細胞膜成分的GUV於含鹽緩衝溶液之穩定性 ......................... 22
4.2.2 Bax加入BimBH3後對GUV之作用 ......................................................... 24
4.3 利用小分子螢光染料Alexa 647觀察Bax對於含有CL的GUV,產生之滲入現
象 ............................................................................................................................ 26
4.3.1 測試含有CL的GUV於含鹽緩衝溶液之穩定性 ...................................... 26
4.3.2 Bax對含有CL的GUV之作用 ................................................................... 27
4.4 利用大分子螢光染料FITC-Dextran 70檢驗於不同細胞膜成分的GUV下 Bax
之功能性 ................................................................................................................ 28
4.4.1 測試含有CL的GUV於含鹽緩衝溶液之穩定性 ...................................... 28
4.4.2 Bax加入BimBH3後對GUV穿孔之功能性 ............................................. 29
4.4.3 o-Bax對不含CL的GUV穿孔之功能性 ................................................... 30
4.5 同時利用小分子螢光染料Alexa 647及大分子螢光染料FITC-Dextran 70檢驗於
不同細胞膜成分的GUV下o-Bax之功能性 ...................................................... 31
4.5.1 o-Bax對含有CL的GUV穿孔之功能性 ................................................... 31
4.5.2 o-Bax對含有PG的GUV穿孔之功能性 ................................................... 33
4.6 定性討論 ................................................................................................................ 33
4.6.1 PC - 純粹PC的細胞膜並不適合Bax於其上表現穿孔之功能性............ 33
4.6.2 PC/PE (75:25) - 抑制寡聚化,但負曲率利於Bax穿孔 ............................ 34
4.6.3 PC/PG (75:25)&(90:10) - 不利於Bax貼附上亦不適合於其上工作......... 35
4.6.4 PC/CL (90:10) - 具有增進BimBH3活化Bax的能力,負曲率利於Bax工
作 .................................................................................................................... 35
4.7 利用模型對於Bax產生之孔洞大小作定量分析 ................................................ 36
4.7.1 計算穿透率P值(Permeability) ..................................................................... 36
4.7.2 使用模型並透過穿透率P值推算孔洞大小 ................................................ 38
4.7.3 不同條件下分析所得之孔洞半徑 ................................................................ 40
第五章 結論................................................................................................................53
參考文獻......................................................................................................................55
參考文獻
(1) Parsons, M. J.; Jude, S. Mitochondrial Outer Membrane Permeabilization.
Encycl. Life Sci. 2009.
(2) Dewson, G.; Ma, S.; Frederick, P.; Hockings, C.; Tan, I.; Kratina, T.; Kluck, R.
M. Bax Dimerizes via a Symmetric BH3:groove Interface during Apoptosis.
Cell Death Differ. 2012, 19, 661–670.
(3) Czabotar, P. E.; Westphal, D.; Dewson, G.; Ma, S.; Hockings, C.; Fairlie, W.
D.; Lee, E. F.; Yao, S.; Robin, A. Y.; Smith, B. J.; et al. Bax Crystal Structures
Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to
Induce Apoptosis. Cell 2013, 152, 519–531.
(4) Lucken-Ardjomande, S.; Montessuit, S.; Martinou, J.-C. Contributions to Bax
Insertion and Oligomerization of Lipids of the Mitochondrial Outer Membrane.
Cell Death Differ. 2008, 15, 929–937.
(5) Wei, M. C.; Zong, W. X.; Cheng, E. H.; Lindsten, T.; Panoutsakopoulou, V.;
Ross, a J.; Roth, K. a; MacGregor, G. R.; Thompson, C. B.; Korsmeyer, S. J.
Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial
Dysfunction and Death. Science 2001, 292, 727–730.
(6) Kuwana, T.; Mackey, M. R.; Perkins, G.; Ellisman, M. H.; Latterich, M.;
Schneiter, R.; Green, D. R.; Newmeyer, D. D. Bid, Bax, and Lipids Cooperate
to Form Supramolecular Openings in the Outer Mitochondrial Membrane. Cell
2002, 111, 331–342.
(7) Korsmeyer, S. J.; Wei, M. C.; Saito, M.; Weiler, S.; Oh, K. J.; Schlesinger, P.
H. Pro-Apoptotic Cascade Activates BID, Which Oligomerizes BAK or BAX
into Pores That Result in the Release of Cytochrome C. Cell Death Differ.
2000, 7, 1166–1173.
(8) Wei, M. C.; Lindsten, T.; Mootha, V. K.; Weiler, S.; Gross, a; Ashiya, M.;
Thompson, C. B.; Korsmeyer, S. J. tBID, a Membrane-Targeted Death Ligand,
Oligomerizes BAK to Release Cytochrome C. Genes Dev. 2000, 14,
2060–2071.
56
(9) Du, H.; Wolf, J.; Schafer, B.; Moldoveanu, T.; Chipuk, J. E.; Kuwana, T. BH3
Domains Other than Bim and Bid Can Directly Activate Bax/Bak. J. Biol.
Chem. 2011, 286, 491–501.
(10) Strasser, A. The Role of BH3-Only Proteins in the Immune System. Nat. Rev.
Immunol. 2005, 5, 189–200.
(11) Leber, B.; Lin, J.; Andrews, D. W. Embedded Together: The Life and Death
Consequences of Interaction of the Bcl-2 Family with Membranes. Apoptosis
2007, 12, 897–911.
(12) Biolow, M. Mitochondrial Contact Sites. J. Biol. Chem. 1990, 265.
(13) Esposti, M. D.; Cristea, I. M.; Gaskell, S. J.; Nakao, Y.; Dive, C. Proapoptotic
Bid Binds to Monolysocardiolipin, a New Molecular Connection between
Mitochondrial Membranes and Cell Death. Cell Death Differ. 2003, 10,
1300–1309.
(14) Bergstrom, C. L.; Beales, P. a; Lv, Y.; Vanderlick, T. K.; Groves, J. T.
Cytochrome c Causes Pore Formation in Cardiolipin-Containing Membranes.
Proc. Natl. Acad. Sci. 2013, 110, 6269–6274.
(15) Gustavo Fuertes, Ana J. García-Sáez, Santi Esteban-Martín, Diana Giménez,
Orlando L. Sánchez-Muñoz, Petra Schwille, and J. S. Pores Formed by Baxα5
Relax to a Smaller Size and Keep at Equilibrium. Biophys. J. 2010, 99,
2917–2925.
(16) García-Sáez, A. J.; Ries, J.; Orzáez, M.; Pérez-Payà, E.; Schwille, P.
Membrane Promotes tBID Interaction with Bcl-XL. Nat. Struct. Mol. Biol. 2009,
16, 1178–1185.
(17) Wheaten, S. a.; Ablan, F. D. O.; Spaller, B. L.; Trieu, J. M.; Almeida, P. F.
Translocation of Cationic Amphipathic Peptides across the Membranes of Pure
Phospholipid Giant Vesicles. J. Am. Chem. Soc. 2013, 135, 16517–16525.
(18) Schön, P.; García-Sáez, A. J.; Malovrh, P.; Bacia, K.; Anderluh, G.; Schwille,
P. Equinatoxin II Permeabilizing Activity Depends on the Presence of
Sphingomyelin and Lipid Phase Coexistence. Biophys. J. 2008, 95, 691–698.
(19) Semwogerere, D.; Weeks, E. R. Confocal Microscopy. 2005.
57
(20) Bacia, K.; Schweizer, J. Practical Course   : Giant Unilamellar Vesicles. 2005,
1–18.
(21) Montermini, D.; Winlove, C. P.; Michel, C. C. Effects of Perfusion Rate on
Permeability of Frog and Rat Mesenteric Microvessels to Sodium Fluorescein.
J. Physiol. 2002, 543, 959–975.
(22) Fields, A. P.; Cohen, A. E. Electrokinetic Trapping at the One Nanometer
Limit. Proc. Natl. Acad. Sci. 2011, 108, 8937–8942.
(23) Fd-, S. S. N. Sigma-Aldrich Product Information Sheet
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_
Information_Sheet/1/fd150spis.pdf.
(24) Van Rooijen, B. D.; Claessens, M. M.; Subramaniam, V. Membrane
Permeabilization by Oligomeric Alpha-Synuclein: In Search of the Mechanism.
PLoS One 2010, 5, e14292.
(25) Schellenberg, B.; Wang, P.; Keeble, J. a.; Rodriguez-Enriquez, R.; Walker, S.;
Owens, T. W.; Foster, F.; Tanianis-Hughes, J.; Brennan, K.; Streuli, C. H.; et al.
Bax Exists in a Dynamic Equilibrium between the Cytosol and Mitochondria to
Control Apoptotic Priming. Mol. Cell 2013, 49, 959–971.
(26) Schug, Z. T.; Gottlieb, E. Cardiolipin Acts as a Mitochondrial Signalling
Platform to Launch Apoptosis. Biochim. Biophys. Acta - Biomembr. 2009,
1788, 2022–2031.
(27) Sorice, M.; Manganelli, V.; Matarrese, P.; Tinari, A.; Misasi, R.; Malorni, W.;
Garofalo, T. Cardiolipin-Enriched Raft-like Microdomains Are Essential
Activating Platforms for Apoptotic Signals on Mitochondria. FEBS Lett. 2009,
583, 2447–2450.
(28) Mileykovskaya, E.; Dowhan, W. Cardiolipin Membrane Domains in
Prokaryotes and Eukaryotes. Biochim. Biophys. Acta - Biomembr. 2009, 1788,
2084–2091.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *