帳號:guest(3.144.7.52)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊宗堯
作者(外文):Yang, Tsung-Yao
論文名稱(中文):利用不同鈷金屬錯合物在醋酸乙烯酯活性自由基聚合之機理研究
論文名稱(外文):Cobalt Mediated Radical Polymerization of Vinyl Acetate: Mechanistic Studies
指導教授(中文):彭之皓
指導教授(外文):Peng, Chi-How
口試委員(中文):韓建中
陳俊太
彭之皓
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023535
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:鈷催化自由基聚合醋酸乙烯酯活性自由基聚合
相關次數:
  • 推薦推薦:0
  • 點閱點閱:164
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
主流的活性自由基聚合技術中,其中鈷催化自由基聚合 (Cobalt-mediated radical polymerization, CMRP) 占有重要的一席之地。醋酸乙烯酯自由基具有高反應性且不穩定,終止鏈較容易產生;而有多種鈷金屬錯合物應可以應用於醋酸乙烯酯的活性自由基聚合,本研究主要探討其動力學與聚合機制。
不同環境下,利用紫質鈷金屬錯合物CoII(TMP) 控制醋酸乙烯酯之活性自由基聚合反應。在無溶劑環境下,聚醋酸乙烯酯分子量與單體轉換率呈直線上升且與理論分子量相符,單體轉換率高達69 % 並且擁有低分子量分佈指數 (Mw/Mn = 1.12 ~ 1.34);而在非配位溶劑環境下,醋酸乙烯酯自由基會與溶劑發生不可逆鏈轉移反應,因此聚醋酸乙烯分子量與理論值有偏離現象;在配位溶劑環境下 (四氫呋喃與吡啶),以四氫呋喃為添加劑時,當 [THF]/[Co] 比例增加,鈷二價轉換成有機鈷三價速率會提升並且沉潛期下降;以吡啶為添加劑時,吡啶的配位改變了活性與休眠物種間的平衡並傾向於活性物種。當25當量的吡啶加入聚合反應時,活性與休眠物種間的平衡常數 (Keq) 會由10-12 變成5.22 × 10-8,代表鈷催化自由基聚合的反應機制由等能量鏈轉移轉變為可逆終止反應。
目前最常應用於醋酸乙烯酯活性自由基聚合之鈷金屬錯合物為CoII(acac)2、CoII(TMP) 及 CoII(salen*),在不同條件下,此三種鈷錯合物可以有效地控制醋酸乙烯酯之活性自由基聚合。為了比較三種催化劑的反應機理,於相同條件下進行活性自由基聚合,60 ºC下之反應條件: [VAc]/[AIBN]/[CoII] = 700/3/1,並利用不同鈷金屬催化劑合成聚起始劑 (Macroinitiator),無額外添加起始劑環境下,進行醋酸乙烯酯的鏈延伸反應 (Chain extension),證明60 ºC下,利用CoII(TMP) 及CoII (salen*) 進行醋酸乙烯酯之活性自由基聚合反應遵循等能量鏈轉移機制 (Degenerative transfer);而CoII(acac)2進行該聚合之機制傾向於可逆終止反應 (Reversible termination)。此外,利用波峰分離 (Peak fitting),可以得到CoII(acac)2 與PVAc-CoII(acac)2 之間的平衡常數為6.93 × 10-7。
中文摘要....................................................I
英文摘要..................................................III
目錄.......................................................V
圖目錄.....................................................IX
表目錄....................................................XIX
式目錄....................................................XIX
第一章 緒論.................................................1
1-1 高分子的歷史背景.........................................1
1-2 自由基聚合反應的發展......................................3
1-2-1 傳統自由基聚合反應......................................3
1-2-2 可控/活性自由基聚合反應的原理.............................5
1-3 主流的活性自由基聚合反應技術................................7
1-3-1 氮氧自由基聚合反應 (Nitroxide-mediated radical polymerization, NMP).......................................7
1-3-2 原子轉移自由基聚合反應 (Atom transfer radical polymerization, ATRP)......................................8
1-3-3 可逆加成斷裂鏈轉移聚合 (Reversible addition-fragmentation chain transfer, RAFT).....................................9
1-3-4 鈷催化自由基聚合 (Cobalt-mediated radical polymerization, CMRP).....................................................11
1-4 鈷催化劑及其應用.........................................14
1-4-1 紫質鈷金屬錯合物,CoII(TMP)............................14
1-4-2 乙醯丙酮鈷錯合物,CoII(acac)2..........................15
1-4-3 Co(salen*)衍生物.....................................17
1-5 研究目的...............................................18
第 二 章 實驗部份...........................................19
2-1化學藥品................................................19
2-2 儀器設備與鑑定方法.......................................20
2-2-1 核磁共振光譜儀 (Nuclear magnetic resonance, NMR)......20
2-2-2 凝膠滲透層析儀 (Gel permeation chromatography, GPC)...21
2-2-3 紫外光/可見光光譜儀 (UV-vis spectroscopy)..............21
2-3 合成流程圖.............................................22
2-4 合成步驟...............................................23
2-4-1 化合物Tetramesitylporphyrin (TMP) 之合成..............23
2-4-2 化合物Cobalt tetramesitylporphyrin Co(TMP) 之合成.....24
2-4-3 化合物3,5-di-tert-butyl salicylaldehyde之合成.........24
2-4-4 化合物 [(R,R)-N,N‘-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanedi amine] 之合成.........25
2-4-5 化合物 [(R,R)-N,N‘-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine]之合成..............26
2-4-6 化合物 [(R,R)-N,N‘-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenedi amine]之合成............26
2-4-7 化合物 Co(salen*) 衍生物之合成.........................27
2-4-8 化合物 Co(salen*)-OTs之合成...........................28
2-4-9 化合物 Co(salen*)-Cl之合成............................28
2-4-10 化合物 Co(salen*)-OMe 之合成.........................29
第三章.....................................................30
3-1 前言..................................................30
3-2 不同溶劑環境下進行醋酸乙烯酯的活性自由基聚合反應...............31
3-3 無溶劑環境下加入四氫呋喃對於醋酸乙烯酯活性自由基聚合之影響......33
3-3-1 利用1H NMR光譜觀察活性與休眠物種之間的變化................35
3-3-2 利用1H NMR光譜觀察活性與休眠物種之間的變化 (四氫呋喃)......36
3-4 無溶劑環境下加入吡啶對於醋酸乙烯酯的活性自由基聚合反應之影響....39
3-4-1 利用1H NMR光譜觀察活性與休眠物種之間的變化 (吡啶).........41
3-4-2 利用UV-visible光譜觀察活性與休眠物種之間的變化...........42
3-5 結論.................................................44
第四章...................................................46
探討不同鈷金屬錯合物進行醋酸乙烯酯的活性自由基聚合之反應機制........46
4-1 前言.................................................46
4-2 不同鈷金屬催化劑進行醋酸乙烯酯的活性自由基聚合之最適條件.......47
4-2-1 醋酸乙烯酯與CoII(acac)2之比例對於活性自由基聚合反應的影響..47
4-2-2 自由基與CoII(acac)2之比例對於活性自由基聚合反應的影響......49
4-2-3 自由基與CoII(TMP)之比例對於活性自由基聚合反應的影響........52
4-3 利用不同鈷金屬催化劑進行醋酸乙烯酯的活性自由基聚合............54
4-4 聚醋酸乙烯酯之鏈延伸反應 (Chain extension)................56
4-4-1 無額外添加起始劑之鏈延伸反應.............................57
4-4-2 額外添加起始劑之鏈延伸反應..............................62
4-5 結論..................................................66
第五章....................................................67
探討具有不同結構的Co(salen*) 衍生物進行醋酸乙烯酯活性自由基聚合的比較........................................................67
5-1 前言..................................................67
5-2 利用CoII(etsalen) 及CoII(salophen) 進行醋酸乙烯酯之活性自由基聚合......................................................68
5-3 利用CoII(etsalen) 及CoII(salophen) 進行丙烯酸甲酯之活性自由基聚合......................................................72
5-4 結論..................................................76
六 附錄...................................................77
參考文獻...................................................93
1.J. T. Byers, in 'Rubber Technology' (Ed. M. Morton). 3rd Edn, Van Nostrand Reinhold, New York, 1987.
2.P. C. Painter; M. M. Coleman, Fundamentals of Polymer Science, Technomic, Lancaster. 1994; Vol. 299.
3.C. Everton, The Story of Billiards and Snooker. Ed. Cassell, London, Great Britain, 1979.
4.T. J. Pinch; W. E. Bijker, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology. 1987; p 17 - 50.
5.H. Morawetz, Polymers: The origins and growth of a science. Dover Publications Inc, New York, 1995.
6.H. Staudinger, Trans. Faraday Soc., 1933, 29, 18.
7.F. W. Billmeyer, J. Polym. Sci. Part B: Polym. Lett., 1972, 10, 485-486.
8.G. B. Kauffman, J. Chem. Educ., 1988, 65, 803.
9.R. Pecora, Physics Today, 1986, 39, 116.
10.R. B. Merrifield, Journal of the American Chemical Society, 1963, 85, 2149-2154.
11.R. Koradi; M. Billeter; K. Wüthrich, J. Mol. Graphics, 1996, 14, 51-55.
12.C. V. Robinson, Nature, 2011, 469, 300-300.
13.K. Tanaka; H. Waki; Y. Ido; S. Akita; Y. Yoshida; T. Yoshida; T. Matsuo, Rapid Commun. Mass Spectrom., 1988, 2, 151-153.
14.D. Saint-James; P. G. Gennes, Phys. Lett., 1963, 7, 306-308.
15.H. Shirakawa; E. J. Louis; A. G. MacDiarmid; C. K. Chiang; A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578-580.
16.G. Yu; J. Gao; J. C. Hummelen; F. Wudl; A. J. Heeger, Science, 1995, 270, 1789-1791.
17.T. M. Trnka; R. H. Grubbs, Acc. Chem. Res., 2000, 34, 18-29.
18.R. R. Schrock; A. H. Hoveyda, Angew. Chem. Int. Ed., 2003, 42, 4592-4633.
19.Y. Chauvin; L. Mussmann; H. Olivier, Angew. Chem. Int. Ed., 1996, 34, 2698-2700.
20.R. Dhib; N. Al-Nidawy, Chem. Eng. Sci., 2002, 57, 2735-2746.
21.J. R. Wunsch, Polystyrene – Synthesis, Production and Applications. iSmithers Rapra: 2000.
22.W. Titow, PVC Technology. London: Elsevier Applied Science: 1984.
23.R. J. Abraham; H. W. Melville; D. W. Ovenall; D. H. Whiffen, Trans. Faraday Soc., 1958, 54, 1133-1139.
24.A. K. Gupta; D. K. Paliwal; P. Bajaj, J. Appl. Polym. Sci., 1998, 70, 2703 - 2709.
25.G. T. Murray, Handbook of materials selection for engineering applications. CRC Press: 1997.
26.M. Szwarc, Nature, 1956, 178, 1168-1169.
27.H. Gao; K. Matyjaszewski, Prog. Polym. Sci., 2009, 34, 317-350.
28.N. Hadjichristidis; M. Pitsikalis; S. Pispas; H. Iatrou, Chem. Rev., 2001, 101, 3747-3792.
29.R. Fayt; R. Forte; C. Jacobs; R. Jerome; T. Ouhadi; P. Teyssie; S. K. Varshney, Macromolecules, 1987, 20, 1442-1444.
30.S. Creutz; P. Teyssié; R. Jérôme, Macromolecules, 1997, 30, 6-9.
31.S. Aoshima; T. Higashimura, Macromolecules, 1989, 22, 1009-1013.
32.S. Kanaoka; M. Sawamoto; T. Higashimura, Macromolecules, 1991, 24, 2309-2313.
33.O. Dechy-Cabaret; B. Martin-Vaca; D. Bourissou, Chem. Rev., 2004, 104, 6147-6176.
34.N. E. Kamber; W. Jeong; R. M. Waymouth; R. C. Pratt; B. G. G. Lohmeijer; J. L. Hedrick, Chem. Rev., 2007, 107, 5813-5840.
35.M. Kato; M. Kamigaito; M. Sawamoto; T. Higashimura, Macromolecules, 1995, 28, 1721-1723.
36.J.-S. Wang; K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117, 5614-5615.
37.C. J. Hawker; A. W. Bosman; E. Harth, Chem. Rev., 2001, 101, 3661-3688.
38.C. J. Hawker; G. G. Barclay; A. Orellana; J. Dao; W. Devonport, Macromolecules, 1996, 29, 5245-5254.
39.K. Matyjaszewski; J. Xia, Chem. Rev., 2001, 101, 2921-2990.
40.V. Coessens; T. Pintauer; K. Matyjaszewski, Prog. Polym. Sci., 2001, 26, 337-377.
41.J. Chiefari; Y. K. Chong; F. Ercole; J. Krstina; J. Jeffery; T. P. T. Le; R. T. A. Mayadunne; G. F. Meijs; C. L. Moad; G. Moad; E. Rizzardo; S. H. Thang, Macromolecules, 1998, 31, 5559-5562.
42.G. Moad; J. Chiefari; Y. K. Chong; J. Krstina; R. T. A. Mayadunne; A. Postma; E. Rizzardo; S. H. Thang, Polym. Int., 2000, 49, 993-1001.
43.S. Perrier; P. Takolpuckdee, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 5347-5393.
44.M. H. Stenzel; L. Cummins; G. E. Roberts; T. P. Davis; P. Vana; C. Barner-Kowollik, Macromol. Chem. Phys., 2003, 204, 1160-1168.
45.C. Boyer; P. Lacroix-Desmazes; J.-J. Robin; B. Boutevin, Macromolecules, 2006, 39, 4044-4053.
46.K. Koumura; K. Satoh; M. Kamigaito; Y. Okamoto, Macromolecules, 2006, 39, 4054-4061.
47.S. Yamago, J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 1-12.
48.S. Yamago; K. Iida; J.-i. Yoshida, J. Am. Chem. Soc., 2002, 124, 13666-13667.
49.B. B. Wayland; L. Basickes; S. Mukerjee; M. Wei; M. Fryd, Macromolecules, 1997, 30, 8109-8112.
50.A. Debuigne; J.-R. Caille; R. Jérôme, Angew. Chem. Int. Ed., 2005, 44, 1101-1104.
51.E. Rizzardo; D. H. Solomon, Polym. Bull., 1979, 1, 529.
52.G. Moad; E. Rizzardo; D. H. Solomon, Macromolecules, 1982, 15, 909.
53.M. K. Georges; R. P. N. Veregin; P. M. Kazmaier; G. K. Hamer, Macromolecules, 1993, 26, 2987-2988.
54.N. R. Cameron; O. Lagrille; P. A. Lovell; B. Thongnuanchan, Polymer, 2014, 55, 772-781.
55.C. Detrembleur; C. Jerome; J. De Winter; P. Gerbaux; J.-L. Clement; Y. Guillaneuf; D. Gigmes, Polym. Chem., 2014, 5, 335-340.
56.L. Zhang; J. Miao; Z. Cheng; X. Zhu, Macromol. Rapid Commun., 2010, 31, 275-280.
57.V. Pitto; B. I. Voit; T. J. A. Loontjens; R. A. T. M. van Benthem, Macromol. Chem. Phys., 2004, 205, 2346-2355.
58.M. Yin; W. D. Habicher; B. Voit, Polymer, 2005, 46, 3215-3222.
59.W. Jakubowski; K. Min; K. Matyjaszewski, Macromolecules, 2005, 39, 39-45.
60.K. Matyjaszewski; W. Jakubowski; K. Min; W. Tang; J. Huang; W. A. Braunecker; N. V. Tsarevsky, Proc. Nat. Acad. Sci. U.S.A., 2006, 103, 15309-15314.
61.C.-H. Peng; M. Zhong; Y. Wang; Y. Kwak; Y. Zhang; W. Zhu; M. Tonge; J. Buback; S. Park; P. Krys; D. Konkolewicz; A. Gennaro; K. Matyjaszewski, Macromolecules, 2013, 46, 3803-3815.
62.D. Charmot; P. Corpart; H. Adam; S. Z. Zard; T. Biadatti; G. Bouhadir, Macromol. Symp., 2000, 150, 23-32.
63.A. Favier; M.-T. Charreyre, Macromol. Rapid Commun., 2006, 27, 653-692.
64.B. B. Wayland; G. Poszmik; S. L. Mukerjee; M. Fryd, J. Am. Chem. Soc., 1994, 116, 7943-7944.
65.L. D. Arvanitopoulos; M. P. Greuel; H. J. Harwood, Polym. Prepr., 1994, 35, 549.
66.A. Debuigne; J.-R. Caille; R. Jérôme, Angew. Chem., 2005, 117, 1125-1128.
67.Y. Piette; A. Debuigne; C. Jerome; V. Bodart; R. Poli; C. Detrembleur, Polym. Chem., 2012, 3, 2880-2891.
68.A. Debuigne; C. Michaux; C. Jérôme; R. Jérôme; R. Poli; C. Detrembleur, Chem. Eur. J., 2008, 14, 7623-7637.
69.A. Debuigne; A. N. Morin; A. Kermagoret; Y. Piette; C. Detrembleur; C. Jérôme; R. Poli, Chem. Eur. J., 2012, 18, 12834-12844.
70.H. Kaneyoshi; K. Matyjaszewski, Macromolecules, 2006, 39, 2757-2763.
71.C.-H. Peng; M. Fryd; B. B. Wayland, Macromolecules, 2007, 40, 6814-6819.
72.C.-H. Peng; J. Scricco; S. Li; M. Fryd; B. B. Wayland, Macromolecules, 2008, 41, 2368-2373.
73.Y. Zhao; H. Dong; Y. Li; X. Fu, Chem. Commun., 2012, 48, 3506-3508.
74.G. Pasparakis; N. Krasnogor; L. Cronin; B. G. Davis; C. Alexander, Chem. Soc. Rev., 2010, 39, 286-300.
75.J. P. Magnusson; A. O. Saeed; F. Fernandez-Trillo; C. Alexander, Polym. Chem., 2011, 2, 48-59.
76.H. Kaneyoshi; K. Matyjaszewski, Macromolecules, 2005, 38, 8163-8169.
77.S. K. K. S; Y. Li; Y. Gnanou; U. Baisch; Y. Champouret; R. Poli; K. C. D. Robson; W. S. McNeil, Chem. Asian J., 2009, 4, 1257-1265.
78.K. S. S. Kumar; Y. Gnanou; Y. Champouret; J.-C. Daran; R. Poli, Chem. Eur. J., 2009, 15, 4874-4885.
79.R. K. Sherwood; C. L. Kent; B. O. Patrick; W. S. McNeil, Chem. Commun., 2010, 46, 2456-2458.
80.C.-M. Liao; C.-C. Hsu; F.-S. Wang; B. B. Wayland; C.-H. Peng, Polym. Chem., 2013, 4, 3098-3104.
81.J. T. Clarke; R. O. Howard; W. H. Stockmayer, Die Makromol. Chem., 1961, 44, 427-447.
82.T. Andruniow; J. Kuta; M. Z. Zgierski; P. M. Kozlowski, Chem. Phys. Lett., 2005, 410, 410-416.
83.A. Debuigne; Y. Champouret; R. Jérôme; R. Poli; C. Detrembleur, Chem. Eur. J., 2008, 14, 4046-4059.
84.C.-S. Hsu; T.-Y. Yang; C.-H. Peng, Polym. Chem., 2014, 5, 3867-3875.
85.許鎮守, 國立清華大學碩士論文, 2013.
86.廖哲民, 國立清華大學碩士論文, 2013.
87.B. B. Wayland; C.-H. Peng; X. Fu; Z. Lu; M. Fryd, Macromolecules, 2006, 39, 8219-8222.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *