帳號:guest(18.191.233.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐敬淳
作者(外文):Hsu, Ching-Chun
論文名稱(中文):有機鈷金屬錯合物CoII(Salen*)在可控/活性自由基聚合反應的機理研究與應用
論文名稱(外文):The Study of Mechanism and Application of Cobalt Salen Complexes in Controlled /Living Radical Polymerization
指導教授(中文):彭之皓
指導教授(外文):Peng, Chi-How
口試委員(中文):韓建中
陳俊太
彭之皓
口試委員(外文):Chien-Chung Han
Chi-How Peng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023526
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:鈷金屬可控活性自由基催化活性自由基聚合嵌段共聚物醋酸乙烯酯
外文關鍵詞:Co(Salen)living radical polymerizationblock copolymervinyl acetate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:251
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文是以CoII(Salen*) 進行醋酸乙烯酯 (VAc)、丙烯酸乙酯 (EA)、丙烯酸叔丁酯 (tBA)、丙烯酸異丁酯 (iBA)、乙烯吡咯烷酮 (NVP)、丙烯腈 (AN)、甲基丙烯酸甲酯 (MMA) 和苯乙烯 (St)的自由基聚合測試。其中VAc、EA、tBA、iBA、及AN的聚合結果顯示其為可控制的活性自由基聚合反應。
在VAc的反應系統中,聚醋酸乙烯酯 (PVAc) 高分子鏈的分子量與單體轉換率呈線性成長,而且可以達到50%以上的單體轉換率。在反應的過程中,所有的CoII(Salen*)會完全轉換成CoIII(Salen*)-R。我們針對引發劑濃度以及金屬催化劑濃度的差異去探討對聚合反應的影響。引發劑越多,沉潛期越短及聚合速率較快,引發劑越少則反之。而當我們維持同樣濃度的引發劑並改變金屬催化劑濃度,可以發現其聚合速率不變,只有沉潛期時間改變,證明了在VAc的系統中,其反應速率只與外加的自由基濃度有關。
在其他單體的反應系統中,聚丙烯酸酯 (acrylate) 類的單體其高分子鏈的分子量與單體轉換率呈線性成長,而且可以達到60%以上的單體轉換率和可以接受的PDI值 (1.30~1.40)。除了VAc與acrylates之外,CoII(Salen*)在AN的自由基聚合反應中也有不錯的控制性。此外,以CoII(Salen*)-PVAc作為大分子起始劑,可以成功的合成出PVAc-b-PS、PVAc-b-PtBA、PVAc-b-PNVP及PVAc-b-PAN嵌段共聚物。
此外我們合成了具有不同配位基的salen鈷金屬錯合物,探討不同結構對我們的VAc活性自由基聚合反應有什麼影響,發現結構較平面的CoII(Salophen)其聚合結果不好 (PDI值 1.92),而結構可以扭曲的CoII(et-salen)及CoII(et-salen(NoTB))
則在VAc的聚合反應中有不錯的表現 (PDI值 1.2~1.3)。
The cobalt(II) [N,N‘-bis(3,5-di-tert-butylsalicyli-dene)-1,2-cyclohexanediamine] (CoII(Salen*)) could be mediated in the controlled/living radical polymerization of vinyl acetate, ethyl acrylate, tert-butyl acrylate, isobutyl acrylate, and acrylonitrile successfully.
In the VAc system, the PVAc polymer chains were growth with conversion linearly and agree to the theoretical molecular weight. The conversion could arrive to 50% with narrow polydispersity index (PDI) were between 1.18 and 1.22. All CoII(Salen*) transform to CoIII(Salen*)-R during induction period. We changed the concentration of initiator and mediator to observe the influence in the polymerization. The more initiator we added, the shorter induction period we could observe. And the rate of polymerizaiton would be fast. When we changed the concentration of mediator and maintained the concentration of initiator, we can observe the rate of polymerization was the same.
In other monomers, acrylates with high conversion (> 60%) and low PDI (1.30~1.40) were obtained. The polymer chains were growth with conversion linearly and agree to the theoretical molecular weight. The polymerization of acrylonitrile mediated by CoII(Salen*) was also good. Moreover, The facile formation of block copolymers of PVAc like PVAc-b-PS, PVAc-b-PtBA, PVAc-b-PNVP and PVAc-b-PAN illustrates the unusual capability of the cobalt Salen* catalyst system to generate new applications in materials science.
The structure would influence the polymerization of VAc. The planar structure, CoII(salophen), performed not well control in the polymerization (Mw/Mn = 1.92). In other side, the distortion structure, CoII(et-salen) and CoII(et-salen(NoTB)), showed good control in the polymerization (Mw/Mn = 1.21 and 1.32).
論文目錄
摘要 I
Abstract II
謝誌 III
論文目錄 IV
本文目錄 V
圖目錄 IX
Scheme目錄 XII
表目錄 XII

本文目錄
第一章 緒論與文獻回顧 1
1-1 高分子聚合物的發展 2
1-2 自由基聚合反應的發展 3
1-2-1 傳統自由基聚合反應 3
1-2-2 活性自由基聚合反應的原理 5
1-3 主流的活性自由基聚合反應技術 7
1-3-1 氮氧自由基聚合反應 (Nitroxide-Mediated Radical Polymerization, NMP) 7
1-3-2 原子轉移自由基聚合反應(Atom Transfer Radical Polymerization, ATRP) 9
1-3-3 可逆加成-斷裂鏈轉移聚合(Reversible Addition-Fragmentation chain Transfer, RAFT) 11
1-3-4 鈷催化自由基聚合(Cobalt-Mediated Radical Polymerization, CMRP) 13
1-4 有機鈷錯合物與鈷金屬自由基 14
1-4-1 Cobalt-Porphyrin 14
1-4-2 Cobalt-bisacetylacetonate CoII(acac)2 16
1-4-3 Metal Salen complexes的發展 18
1-5 研究動機 22
第二章 實驗內容 25
2-1 化學藥品 26
2-2 儀器設備與鑑定方法 28
2-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 28
2-2-2 紫外光/可見光光譜儀 (Ultraviolet-Visible Spectroscopy) 28
2-2-3 THF凝膠滲透層析儀 (Gel Permeation Chromatography) 28
2-2-4 DMF凝膠滲透層析儀 (Gel Permeation Chromatography) 29
2-3 以CoII(Salen*)進行鈷催化自由基聚合反應 30
2-3-1 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚醋酸乙烯酯 (PVAc) 30
2-3-2 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚丙烯酸乙酯 (PEA) 30
2-3-3 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚丙烯酸叔丁酯 (PtBA) 31
2-3-4 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚丙烯酸異丁酯 (PiBA) 31
2-3-5 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚苯乙烯(PS) 32
2-3-6 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚甲基丙烯酸甲酯 (PMMA) 32
2-3-7 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚丙烯腈 (PAN) 33
2-3-8 以CoII(Salen*)進行鈷催化自由基聚合反應合成聚乙烯吡咯烷酮 (PNVP) 33
2-3-9 合成CoIII(Salen*)-PVAc高分子起始劑(macroinitiator) 33
2-3-10 合成PVAc-b-PtBA嵌段共聚物 (block copolymer) 34
2-3-11 合成PVAc-b-PS嵌段共聚物 (block copolymer) 35
2-3-12 合成PVAc-b-PAN嵌段共聚物 (block copolymer) 35
2-3-13 合成PVAc-b-PNVP嵌段共聚物 (block copolymer) 35
2-4 化合物3,5-di-tert-butyl salicylaldehyde之合成 36
2-5 化合物 [(R,R)-N,N‘-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine]之合成 36
2-6 化合物 [(R,R)-N,N‘-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediamine]之合成 37
2-7 化合物 CoII(salen*) 衍生物之合成 38
第三章 CoII(Salen*)催化醋酸乙烯酯(VAc)的活性自由基聚合反應 39
3-1 以CoII(Salen*) 聚合醋酸乙烯酯 (vinyl acetate, VAc) 40
3-2 在不同的起始劑濃度下以CoII(Salen*) 聚合醋酸乙烯酯 (vinyl acetate, VAc) 41
3-3 在不同的鈷金屬錯合物濃度下以CoII(Salen*) 聚合PVAc 46
3-4 結論 51
第四章 以CoII(Salen*)聚合丙烯酸酯(acrylate)的活性自由基聚合反應 52
4-1 以CoII(Salen*)對丙烯酸甲酯進行活性自由基聚合反應的文獻探討及其反應機構 53
4-2 以 CoII(Salen*) 聚合丙烯酸乙酯 (ethyl acrylate, EA) 54
4-3 以 CoII(Salen*) 聚合丙烯酸叔丁酯 (PtBA) 58
4-4 以 CoII(Salen*) 聚合丙烯酸異丁酯 (PiBA) 62
4-5 結論 66
第五章 以CoII(Salen*)聚合其他單體的自由基聚合反應 67
5-1 以 CoII(Salen*) 聚合苯乙烯 (PS) 68
5-2 以 CoII(Salen*) 聚合甲基丙烯酸甲酯 (PMMA) 70
5-3 以 CoII(Salen*) 聚合丙烯腈 (PAN) 74
5-4 以 CoII(Salen*) 聚合乙烯吡咯烷酮 (PNVP) 77
5-5 結論 80
第六章 合成嵌段共聚合物 81
6-1 嵌段共聚物 82
6-2 合成PVAc-b-PtBA嵌段共聚物 (block copolymer) 82
6-3 合成PVAc-b-PSt嵌段共聚物 (block copolymer) 83
6-4 合成PVAc-b-PMMA嵌段共聚物 (block copolymer) 85
6-5 合成PVAc-b-PNVP嵌段共聚物 (block copolymer) 85
6-6 合成PVAc-b-PAN嵌段共聚物 (block copolymer) 86
第七章 以具有不同配位基的Salen鈷金屬錯合物聚合醋酸乙烯酯(VAc)的活性自由基聚合反應 88
7-1適合改變配位基的Salen鈷金屬錯合物 89
7-2 以鈷金屬錯合物聚合醋酸乙烯酯(VAc)的活性自由基聚合反應 90
7-2-1以CoII(et-Salen)聚合PVAc 90
7-2-2以CoII(Salophen)聚合PVAc 94
7-2-3以CoII(et-Salen(NoTB))聚合PVAc 97
7-3 比較不同配位基之鈷金屬錯合物對聚合PVAc的影響 100
7-3-1 不同配位基鈷金屬錯合物聚合PVAc結果比較 100
7-3-2 以EPR結果討論不同配位基的影響 102
7-3-3 以CV結果討論不同配位基的影響 105
7-4 結論 106
第八章 總結與展望 107
第九章 參考文獻 109

1. Morton, M. Rubber technology; Van Nostrand Reinhold Company, 1987.
2. Perry, J. The rubber industry; Longmans, Green and co., 1946.
3. Painter, P. C.; Coleman, M. M. Fundamentals of polymer science; Technomic Lancaster, PA, 1997; Vol. 299.
4. Everton, C. The Story of Billiards and Snooker; Cassell, 1979.
5. Pinch, T. J.; Bijker, W. E. The social construction of technological systems: New directions in the sociology and history of technology 1987, 17.
6. Morawetz, H. Polymers: The origins and growth of a science; Courier Dover Publications, 2002.
7. Staudinger, H. Trans. Faraday Soc. 1933, 29, 18.
8. Tobolsky, A. V.; Mark, H. F. Polymer science and materials; John Wiley & Sons, 1971; Vol. 1.
9. Kauffman, G. B. Journal of Chemical Education 1988, 65, 803.
10. Carothers, W. H. Chem.Rev. 1931, 8, 353.
11. Ziegler, K. Angew. Chem 1952, 64, 323.
12. Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 541.
13. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem.Soc. 1955, 77, 1708.
14. Natta, G. SPE. J 1959, 15, 373.
15. Grubbs, R. H. Angew. Chem. Int. Ed. 2006, 45, 3760.
16. Flory, P. J. Principles of polymer chemistry; Cornell University Press, 1953.
17. Laylin, J. K. Nobel laureates in chemistry, 1901-1992; Wiley-VCH, 1993; Vol. 1.
18. Szwarc, M. Nature 1956, 178, 1168.
19. Szwarc, M. Adv. Polym. Sci. 1983, 49, 1.
20. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Chem. Rev. 2001, 101, 3747.
21. Morton, M.; Fetters, L. J. Rubber Chemistry and Technology 1975, 48, 359.
22. Morton, M. Anionic polymerization: principles and practice; Academic press New York, 1983.
23. Crivello, J.; Lam, J. Macromolecules 1977, 10, 1307.
24. Aoshima, S.; Kanaoka, S. Chem. Rev. 2009, 109, 5245.
25. Kennedy, J. P. Cationic polymerization of olefins: a critical inventory. 1975.
26. Bailey, W. Pergamon Press plc, Comprehensive Polymer Science: the Synthesis, Characterization, Reactions & Applications of Polymers. 1989, 3, 283.
27. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147.
28. Saegusa, T.; Goethals, E. Ring-opening polymerization; ACS Publications, 1977.
29. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
30. Wang, J.-S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
31. Braunecker, W. A.; Matyjaszewski, K. Prog. Polym. Sci. 2007, 32, 93.
32. Matyjaszewski, K., ACS Symp. Ser. 854.
33. Fischer, H. Chem Rev 2001, 101, 3581.
34. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.
35. Poli, R. Angew. Chem. Int. Ed. 2006, 45, 5058.
36. Yamago, S. Chem. Rev. 2009, 109, 5051.
37. Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921.
38. Kamigaito, M.; Ando, T.; Sawamoto, M. Chem Rev 2001, 101, 3689.
39. Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270.
40. Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
41. Favier, A.; Charreyre, M.-T. Macromol. Rapid Comm. 2006, 27, 653.
42. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Chem. Rev. 2006, 106, 3936.
43. Goto, A.; Ohno, K.; Fukuda, T. Macromolecules 1998, 31, 2809.
44. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
45. Moad, G.; Rizzardo, E.; Thang, S. H. Aust J. Chem. 2005, 58, 379.
46. Ting, S. R. S.; Granville, A. M.; Quémener, D.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Aust. J. Chem. 2007, 60, 405.
47. Postma, A.; Davis, T. P.; Li, G.; Moad, G.; O'Shea, M. S. Macromolecules 2006, 39, 5307.
48. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2006, 59, 669.
49. Gaynor, S.; Matyjaszewski, K. In ACS Symp. Ser. 1998; Vol. 685, p 396.
50. Kwak, Y.; Goto, A.; Fukuda, T.; Kobayashi, Y.; Yamago, S. Macromolecules 2006, 39, 4671.
51. Mueller, A. H. E.; Yan, D.; Litvinenko, G.; Zhuang, R.; Dong, H. Macromolecules 1995, 28, 7335.
52. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987.
53. Fukuda, T.; Goto, A. Macromol. Rapid Comm. 1997, 18, 683.
54. Sciannamea, V.; Jerome, R.; Detrembleur, C. Chem. Rev. 2008, 108, 1104.
55. Solomon, D. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5748.
56. Patten, T. E.; Xia, J. H.; Abernathy, T.; Matyjaszewski, K. Science 1996, 272, 866.
57. Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.
58. Matyjaszewski, K. Macromolecules 2012, 45, 4015.
59. Magenau, A. J. D.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Science 2011, 332, 81.
60. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M. J. Am. Chem. Soc. 1994, 116, 7943.
61. Arvanitopoulos, L. D.; Greuel, M. P.; Harwood, H. J. Polym. Prepr. 1994, 208, 402.
62. Wayland, B. B.; Basickes, L.; Mukerjee, S.; Wei, M. L.; Fryd, M. Macromolecules 1997, 30, 8109.
63. Debuigne, A.; Caille, J. R.; Jerome, R. Angew. Chem. Int. Ed. 2005, 44, 1101.
64. Debuigne, A.; Poli, R.; Jerome, C.; Jerome, R.; Detrembleur, C. Prog. Polym. Sci. 2009, 34, 211.
65. Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 2008, 41, 2368.
66. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874.
67. Yamago, S.; Lida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 13666.
68. Ouchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev. 2009, 109, 4963.
69. Rizzardo, E.; Solomon, D. H. Polym. Bull. 1979, 1, 529.
70. Moad, G.; Rizzardo, E.; Solomon, D. H. Macromolecules 1982, 15, 909.
71. Solomon, D.; Rizzardo, E.; Cacioli, P. In Chem. Abstr 1985; Vol. 102, p 221335q.
72. Moad, G.; Rizzardo, E.; Solomon, D. H. Macromolecules 1982, 15, 909.
73. Benoit, D.; Chaplinski, V.; Braslau, R.; Hawker, C. J. J. Am. Chem. Soc. 1999, 121, 3904.
74. Patten, T.; Matyjaszewski, K. Acc. Chem. Res 1999, 32, 895.
75. Wakioka, M.; Baek, K. Y.; Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 2002, 35, 330.
76. Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 4507.
77. Hester, J.; Banerjee, P.; Won, Y.-Y.; Akthakul, A.; Acar, M.; Mayes, A. Macromolecules 2002, 35, 7652.
78. Jakubowski, W.; Matyjaszewski, K. Angew. Chem. In.t Ed. 2006, 45, 4482.
79. Matyjaszewski, K.; Tsarevsky, N. V. Nat Chem 2009, 1, 276.
80. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J. Y.; Braunecker, W. A.; Tsarevsky, N. V. Proc. Natl. Acad. Sci., USA 2006, 103, 15309.
81. Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Polym. Int. 2000, 49, 993.
82. Roth, P. J.; Boyer, C.; Lowe, A. B.; Davis, T. P. Macromol. Rapid. Comm. 2011, 32, 1123.
83. Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2009, 62, 1402.
84. Rizzardo, E.; Solomon, D. H. Aust. J. Chem. 2012, 65, 945.
85. Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H. J. Am. Chem. Soc. 2009, 131, 6914.
86. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39, 8219.
87. Li, S.; de Bruin, B.; Peng, C. H.; Fryd, M.; Wayland, B. B. J. Am. Chem. Soc. 2008, 130, 13373.
88. Debuigne, A.; Michaux, C.; Jerome, C.; Jerome, R.; Poli, R.; Detrembleur, C. Chem. Eur. J. 2008, 14, 7623.
89. Debuigne, A.; Champouret, Y.; Jerome, R.; Poli, R.; Detrembleur, C. Chem. Eur. J. 2008, 14, 4046.
90. Lu, Z.; Fryd, M.; Wayland, B. B. Macromolecules 2004, 37, 2686.
91. Peng, C.-H.; Fryd, M.; Wayland, B. B. Macromolecules 2007, 40, 6814.
92. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 2008, 41, 2368.
93. Poli, R. Chem. Eur. J. 2011, 1513.
94. Debuigne, A.; Warnant, J.; Jerome, R.; Voets, I.; de Keizer, A.; Stuart, M. A.; Detrembleur, C. Macromolecules 2008, 41, 2353.
95. Debuigne, A.; Willet, N.; Jerome, R.; Detrembleur, C. Macromolecules 2007, 40, 7111.
96. Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.
97. Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 7420.
98. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
99. Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801.
100. Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124, 6335.
101. Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
102. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H. Polym. Chem. 2013, 4, 3098.
103. Chiang L.; Laura E. N. A.; Alcantara, J.; Wang, M. C. P.; Storr, T.; Shaver, M. P. Dalton Trans., 2014, 43, 4295.
(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *