帳號:guest(3.139.67.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳祥生
作者(外文):Chen, Hsiang Sheng
論文名稱(中文):一、一步合成法合成具有形狀控制的小顆硫化鉛奈米晶體與他們的生長機制 二、一步合成法合成大顆且具有明確晶面的硫化鉛奈米粒子與其晶面導向的導電性量測
論文名稱(外文):I. One Step Synthesis of Small PbS Nanocrystals with Shape Control and Their Growth Mechanism II. One Step Synthesis of Large PbS Nanocrystals with Well-Defined Facets and Their Facet-Dependent Electrical Conductivity Measurements
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan Yi
口試委員(中文):楊家銘
郭俊宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023523
出版年(民國):104
畢業學年度:104
語文別:英文中文
論文頁數:53
中文關鍵詞:硫化鉛晶面導電性奈米晶體
外文關鍵詞:Lead SulfideFacetConductivityNanocrystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
我們在水相中以一步合成法成功合成出小顆硫化鉛奈米粒子,所合成出的正方體的邊長為21奈米、正八面體邊長為57奈米,並深入探討其成核與晶體成長的機制,借由了解這些機制我們可以掌握控制其大小及形貌的關鍵因素,也因此我們得以以較簡單的方式大量生產這些極小顆且具有均一形狀的硫化鉛奈米粒子;此外,我們也因此得以製造出較大顆的硫化鉛多面體使得單顆硫化鉛粒子的導電性量測得以被實現。
先前我們已觀測到氧化亞銅晶面導向的導電性,而在本實驗中我們又再次借由量測面凸正方體、截角截邊正方體、正八面體與截角截邊正八面體硫化鉛粒子的I-V曲線來展示硫化鉛粒子的晶面導向導電性,其中我們發現{111}晶面幾乎不導電,{100}與{110}導電性相較之下極好,又以{110}最好,與{111}晶面差了約二至三個數量級。這也證實了晶面導向導電性是廣泛存在於半導體之中的,我們認為這些導電性的差異來自于半導體界面上不同晶面所造成的能帶扭曲幅度不同。
We have fabricated small PbS nanocrystals (cubes: 21 nm; octahedra: 57 nm) in aqueous solution using an one-step approach. We gain knowledge in manipulating their shape and size by clear exploration of the relation between nucleation and crystal growth. This enables us to scale up the production using a more intuitive method. Also, the refined seeding growth method allows us to enlarge the size of PbS polyhedra, fulfilling single particle electrical conductivity measurements.
Facet-dependent electrical conductivity of Cu2O crystals has been previously revealed. In this study, we have again successfully demonstrated the facet-dependent electrical property of PbS using face-raised cubes, edge-and corner-truncated cubes, edge- and corner-truncated octahedra and pristine octahedra with the size of several hundreds of nanometers. Two tungsten probes are manipulated to contact the opposite faces of a single particle. The {110} facets showed the highest electrical conductivity, followed by the {100} facets and the {111} facets were observed to be the least conductive. The {111} facets are 500 times less conductive than the {110} faces at an applied voltage of 5 V. This study suggests that facet-dependent electrical conductivity should be regarded as an intrinsic property for semiconductors.
TABLE OF CONTENTS

Abstract -----------------------------------------------------------------------------------------------------------i
論文摘要 ---------------------------------------------------------------------------------------------------------ii
謝誌---------------------------------------------------------------------------------------------------------------iii
Table of Contents------------------------------------------------------------------------------------------------v
List of Figures---------------------------------------------------------------------------------------------------vii
List of Schemes-------------------------------------------------------------------------------------------------viii

Chapter 1 One Step Synthesis of Small PbS Nanocrystals with Shape Control and Their Growth Mechanism

1.1 Introduction --------------------------------------------------------------------------------------------------1
1.2 Experimental-------------------------------------------------------------------------------------------------3
1.2.1 Reagents -----------------------------------------------------------------------------------------3
1.2.2 Instrumentation---------------------------------------------------------------------------------3
1.2.3 One-pot synthesis of small PbS cubes ------------------------------------------------------3
1.2.4 One-pot synthesis of small PbS octahedra -------------------------------------------------4
1.2.5 Characterizations ------------------------------------------------------------------------------4
1.2.5.1 Electron microscopy -----------------------------------------------------------------4
1.2.5.2 Element analysis by EDS and XPS ------------------------------------------------6
1.2.5.3 Powder X-ray diffraction ------------------------------------------------------------8
1.2.5.4 Zeta potential measurements --------------------------------------------------------9
1.2.5.5 Scaling up the production-----------------------------------------------------------10
1.3 Results and discussion ------------------------------------------------------------------------------------11
1.3.1 Previous hypothesis: reaction rate determines shape ------------------------------------11
1.3.2 Nucleation versus crystal growth-----------------------------------------------------------12
1.3.3 The size effect of seeds in seeding growth method --------------------------------------13
1.3.4 Influence of reagent introduction sequence -----------------------------------------------20
1.4 Conclusion--------------------------------------------------------------------------------------------------25
Reference--------------------------------------------------------------------------------------------------------26
Appendix --------------------------------------------------------------------------------------------------------28
i. measurements of particle size and its distribution -------------------------------------------28
ii. XPS data of PbS octahedra and cubes --------------------------------------------------------29

Chapter 2 One-Step Synthesis of Large PbS Nanocrystals with Well-Defined Facets and Their Facet-Dependent Electrical Conductivity Measurements

2.1 Preface-------------------------------------------------------------------------------------------------------35
2.2 Experimental------------------------------------------------------------------------------------------------36
2.2.1 Reagents ----------------------------------------------------------------------------------------36
2.2.2 Instrumentation --------------------------------------------------------------------------------36
2.2.3 Preparation of large PbS nanocrystals------------------------------------------------------37
2.2.3.1 Synthesis and characterization of face-raised cubes and edge- and corner- truncated cubes -----------------------------------------------------------------------37
2.2.3.2 Synthesis of octahedra and edge- and corner-truncated octahedra -----------38
2.3 Single particle I-V curve measurements -----------------------------------------------------------------40
2.4 Results and discussion -------------------------------------------------------------------------------------42
2.4.1 I-V curve measurements of {111}-{111} --------------------------------------------------42
2.4.2 {100}-{100} electrical conductivity with different particle shapes and sizes---------44
2.4.3 {110}-{110} electrical conductivity with different particle shapes --------------------46
2.4.4 Comparing the electrical conductivity of the three basic facets and illustration of the modified band diagram of PbS and W probe ----------------------------------------------48
2.4.5 Probing different facets -----------------------------------------------------------------------50
2.5 Conclusion---------------------------------------------------------------------------------------------------52
Reference --------------------------------------------------------------------------------------------------------53




LIST OF FIGURES

Chapter 1
One Step Synthesis of Small PbS Nanocrystals with Shape Control and Their Growth Mechanism
Figure 1.1 SEM, TEM images and SAED patterns of PbS nanocrystals --------------------------------5
Figure 1.2 Atomic sturcture of three basic facets of PbS --------------------------------------------------7
Figure 1.3 PXRD of PbS cubes and octahedra --------------------------------------------------------------8
Figure 1.4 Zeta potential measurements of synthesized PbS ----------------------------------------------9
Figure 1.5 Images of scaled up production------------------------------------------------------------------10
Figure 1.6 SEM images polyhedra prepared using seeding growth method----------------------------11
Figure 1.7 SEM images of synthesized PbS nanocrystal--------------------------------------------------14
Figure 1.8 SEM images of synthesized PbS nanocrystal--------------------------------------------------15
Figure 1.9 SEM images of synthesized PbS nanocrystal--------------------------------------------------17
Figure 1.10 SEM images of synthesized PbS nanocrystal ------------------------------------------------19
Figure 1.11 SEM images of the result of changing reagent introduction sequence--------------------21
Figure 1.12 Monitoring the pH value of the whole process-----------------------------------------------23
Figure 1.13 Monitoring the process of different reagent introduction sequence by UV-vis spectra 24
Figure 1.14 UV-vis absorption spectrum of PbS nanocrystals -------------------------------------------24

Chapter 2
One-step Synthesis of Large Lead Sulfide Nanocrystals with Well-Defined Facet and Their Facet-dependent Electrical Conductivity

Figure 2.1 SEM, TEM images and SEAD patterns of synthesized PbS nanocrystal------------------39
Figure 2.2 PXRD patterns of synthesized PbS nanocrystal-----------------------------------------------39
Figure 2.3 SEM image of single layer of edge- and corner-truncated PbS octahedra-----------------40
Figure 2.4 I-V characteristics of {111}-{111}--------------------------------------------------------------43
Figure 2.5 I-V characteristics of {100}-{100}--------------------------------------------------------------45
Figure 2.6 I-V characteristics of {110}-{110}--------------------------------------------------------------47
Figure 2.7 Comparison of I-V characteristics of the three basic facets of PbS crystals ---------------48
Figure 2.8 Proposed band diagram of PbS and W probe--------------------------------------------------49
Figure 2.9 I-V characteristics of probing {110}-{111} ---------------------------------------------------51
Figure 2.10 Proposed band diagram contacting two different facets ------------------------------------51

LIST OF SCHEMES


Chapter 1
One Step Synthesis of Small PbS Nanocrystals with Shape Control and Their Growth Mechanism
Scheme 1.1 Seeding growth method developed by Jian-Kwan Wu --------------------------------------11
Scheme 1.2 Seeding growth method using well-defined PbS cubes as seeds --------------------------13
Scheme 1.3 Seeding growth method using well-defined PbS octahedra as seeds----------------------15
Scheme 1.4 Seeding growth method using well-defined PbS cubes as seeds---------------------------17
Scheme 1.5 Seeding growth method using well-defined PbS octahedra as seeds----------------------19
Scheme 1.6 Changing reagent adding sequence ------------------------------------------------------------21

Chapter 2
One-step Synthesis of Large Lead Sulfide Nanocrystals with Well-Defined Facet and Their Facet-dependent Electrical Conductivity

Scheme 2.1 Layout of experimental setup-------------------------------------------------------------------41
1. Zhao, N.; Qi, L., Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants. Advanced Materials 2006,18 (3), 359-362.
2. McDonald, S. A. K., G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H., Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics. Nat. Mater. 2005,4, 138-142.
3. Seo, J. C., M. J.; Lee, D.; Cartwright, A. N.; Prasad, P. N., Efficient Heterojunction Photovoltaic Cell Utilizing Nanocomposites of Lead Sulfide Nanocrystals and a Low-Bandgap Polymer. Adv. Mater. 2011,23, 3984-3988.
4. Tang, J. K., K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H., Colloidal- Quantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nat. Mater. 2011,10, 765-771.
5. Sun, L. F. C., J. J.; Stachnik, D.; Bartnik, A. C.; Hyun, B.-R.; Malliaras, G. G.; Hanrath, T.; Wise, F. W. , Bright Infrared Quantum- Dot Light-Emitting Diodes through Inter-Dot Spacing Control. Nat. Nanotechnol. 2012,7, 369-373.
6. Xu, L.; Zhang, W.; Ding, Y.; Yu, W.; Xing, J.; Li, F.; Qian, Y., Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process. Journal of Crystal Growth 2004,273 (1-2), 213-219.
7. Duan, T.; Lou, W.; Wang, X.; Xue, Q., Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007,310 (1-3), 86-93.
8. Warner, J. H.; Cao, H., Shape control of PbS nanocrystals using multiple surfactants. Nanotechnology 2008,19 (30), 305605.
9. Li, H.; Chen, D.; Li, L.; Tang, F.; Zhang, L.; Ren, J., Size- and shape-controlled synthesis of PbSe and PbS nanocrystals via a facile method. CrystEngComm 2010,12 (4), 1127.
10. Wang, Y.; Tang, A.; Li, K.; Yang, C.; Wang, M.; Ye, H.; Hou, Y.; Teng, F., Shape-controlled synthesis of PbS nanocrystals via a simple one-step process. Langmuir : the ACS journal of surfaces and colloids 2012,28 (47), 16436-43.
11. Wang, Y.; Yang, X.; Xiao, G.; Zhou, B.; Liu, B.; Zou, G.; Zou, B., Shape-controlled synthesis of PbS nanostructures from −20 to 240 °C: the competitive process between growth kinetics and thermodynamics. CrystEngComm 2013,15 (27), 5496.
12. Zhao, Z.; Zhang, K.; Zhang, J.; Yang, K.; He, C.; Dong, F.; Yang, B., Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010,355 (1-3), 114-120.
13. Mandeep Singh Bakshi, P. T., | Shweta Sachar, Gurpreet Kaur,; Tarlok Singh Banipal, F. P., and Nils O. Petersen*, Aqueous Phase Surfactant Selective Shape Controlled Synthesis of Lead SulfideNanocrystals. J. Phys. Chem. C 2007,111, 18087-18098.
14. Guangjun Zhou, M. L., * Zhiliang Xiu, Shufen Wang, Haiping Zhang, Yuanyuan Zhou, and Shumei Wang, Controlled Synthesis of High-Quality PbS Star-Shaped Dendrites, Multipods, TruncatedNanocubes, and Nanocubes and Their Shape Evolution Process. J. Phys. Chem. B 2006,110, 6543-6548.
15. Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H., Fast synthesis of PbS nanocrystals in aqueous solution with shape evolution from cubic to octahedral structures and their assembled structures. Chem. Eur. J.,2012,18 (45), 14473-8.
16. Michio Ikezawa, T. O., Yasuaki Masumoto, and Andrey A. Lipovskii, Complementary detection of confined acoustic phonons in quantum dots by coherent phonon measurement and Raman scattering. Phys. Rev. B 2001, 64, 201315(R).
17. Kesong Yang, W. S., Shidong Wang, Marco Buongiorno Nardelli & Stefano Curtarolo, A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 2012, 11, 614-619.
18. Nardeep Kumar, B. A. R., N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and Hui Zhao, Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3. Phys. Rev. B 2011, 83, 235306-.
19. Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K., PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”. Advanced Functional Materials 2009, 19 (17), 2735-2742.
20. Steven A. McDonald, G. K., Shiguo Zhang, Paul W. Cyr, Ethan J. D. Klem, Larissa Levina & Edward H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.
21. (a) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H., Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au−Cu2O Core−Shell Heterostructures. Journal of the American Chemical Society 2010, 133 (4), 1052-1057; (b) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H., Facet-dependent optical properties of polyhedral Au-Cu2O core-shell nanocrystals. Nanoscale 2014, 6 (8), 4316-4324.
22. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. Journal of the American Chemical Society 2011, 134 (2), 1261-1267.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *