帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱暐珺
論文名稱(中文):以硫氫配位鍵結之雙亞硝基鐵錯合物與單亞硝基鐵錯合物相關反應性探討
論文名稱(外文):Dinitrosyl- and Mononitrosyl- Iron Complexes(DNICs) Containing [SH]- coordinate Ligand
指導教授(中文):廖文峯
口試委員(中文):洪政雄
王雲銘
廖文峯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023522
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:雙亞硝基鐵錯合物硫化氫單亞硝基鐵錯合物
外文關鍵詞:DNICMNICH2S
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中成功的合成出FeIII與[HS]-鍵結,具有[FeIII-SH] motif的DNIC ([K-18-crown-6-ether][(HS)2Fe(NO)2] (1) 及[PPN][(HS)2Fe(NO)2] (1-PPN))、MNIC ([PPN][(HS)3Fe(NO)] (3))以及dimerize成[PPN]2[(μ-S)Fe(SH)(NO)]2 (4) (Scheme 1),其中complex 1 溶於水中會釋放出H2S並生成RRS,代表DNIC在hydrophobic的環境之下或許可以當作H2S的儲存和傳遞者,並且在hydrophilic的環境下再將其釋放出來,原因可能跟NO本身non-innocent的性質有關,NO扮演了調控電子的角色而讓生物體內的[HS]-有機會鍵結到Fe上,而且鍵結到Fe上之後藉由NO供給電子給Fe,讓FeIII不會被thiolate還原成FeII。
從實驗上EPR、IR、XAS、XRD綜合比較後,可以決定出含有[FeIII-SH] motif的complex 1, 1-PPN的電子結構應為high-spin FeIII (SFe = 5/2)與兩個NO-(SNO = 1)以antiferromagnetically coupled,而熱不穩定的complex 3會自然的dimerize成complex 4,其電子結構可以描述成兩個{FeIII(NO-)}7以antiferromagnetic coupled形成diamagnetic complex,從理論計算也可以輔助這一點。
另外與本實驗室最近發表的文獻提到[PPN][Fe(SH)4] (5)和[PPN]2[(μ-S)Fe(SH)]2 (6)的合成及穩定性,由實驗結果得知穩定性為1 > 3 > 5,釋放出H2S形成dimer form之穩定度為2 > 4 > 6,說明了NO越多穩定性越高,並且用理論計算和氧化還原電位去輔助說明為何有此現象。
The formation of hydrosulfide-bound {Fe(NO)2}9 dinitrosyl iron complex (DNIC), [K-18-crown-6-ether][(HS)2Fe(NO)2] (1) ([PPN][(HS)2Fe(NO)2] (1-PPN)) and the precursor mononitrosyl iron complex (MNIC), [PPN][(HS)3Fe(NO)] (3), were synthesized and characterized. Transformation of complex 1 into Roussin’s red salt (RRS) along with release of H2S in protic solvent was probed by NBD-SCN. It may suggest that DNIC can be a role for H2S storage and transport in hydrophobic environment. This phenomenon is attributed to the characteristic of non-innocent NO to regulate electron transfer among [FeIII-SH] core, which inhibited the reduction of FeIII into FeII and prevent reductive elimination of Fe-SH bond,
The electronic structure containing [FeIII-SH] motif of complex 1, 1-PPN, 4 was determined by EPR, IR, XAS, and XRD. Complex 1 and 1-PPN can be described as high-spin FeIII (SFe = 5/2) and two NO-(SNO = 1) antiferromagnetically coupled. The thermally unstable complex 3 spontaneously dimerize into the first structurally characterized FeIII-hydrosulfide complex [PPN]2[(μ-S)Fe(SH)(NO)]2 (4). The electronic structure can be described as two {FeIII(NO-)}7 antiferromagnetic coupled to yield S = 0 diamagnetic complex.
From recently published paper, the thermally unstable [PPN][Fe(SH)4] (5) spontaneously dimerizes to form [PPN]2[(SH)Fe (μ-S)]2 (6). According to the experiment, the stability of complex 1, 3, and 5 is 1 > 3 > 5. The stability of the dimerized-form is 2 > 4 > 6. On the basis of DFT computation and reduction potential, NO serves as strong electron-donating ligand (compared to thiolate), which reduces the effective nuclear charge(Zeff) of the iron center and prevent complex 1 from dimerization. That is, the stability increases accompanied with the larger NO-coordinate ligands bound to the [FeIII-SH] motif.
第一章:緒論: 1
1-1一氧化氮(nitric oxide, NO) 1
1-2一氧化氮與雙亞硝基鐵錯合物之電子結構 3
1-3一氧化氮在生物體內的儲存和傳遞 6
1-4硫化氫(Hydrogen sulfide, H2S) 9
1-5 H2S和NO的交互作用 13
1-6研究方向 18
第二章:實驗 19
2-1一般實驗 19
2-2儀器 19
2-3藥品 21
2-4化合物的合成、反應與鑑定 21
2-4-1合成[K][StBu]和[K][SEt] 21
2-4-2合成[PPN][(Cl)3Fe(NO)] 22
2-4-3合成[PPN][ (tBuS)3Fe(NO)]與[PPN][(EtS)3Fe(NO)] 22
2-4-4合成[K-18-crown-6-ether][(HS)2Fe(NO)2] (1) 及[PPN][(HS)2Fe(NO)2] (1-PPN) 23
2-4-5合成[PPN][(HS)3Fe(NO)] (3)並轉換成[PPN]2[Fe2S2(SH)2(NO)2] (4) 23
2-4-6[K-18-crown-6-ether][(HS)2Fe(NO)2] (1)與水反應轉換成Roussin’s Red Salt (RRS, 2)並以H2S probe NBD-SCN (NBD = nitrobenzofurazan) 偵測 24
2-4-7[K-18-crown-6-ether][(HS)2Fe(NO)2] 與HSPh反應並以H2S probe NBD-SCN (NBD = nitrobenzofurazan) 偵測 25
2-4-8 Roussin’s Red Salt (2) 與硫化氫反應 25
2-5晶體結構解析(Crystallography) 26
第三章:結果與討論 30
3-1[K-18-crown-6-ether][(HS)2Fe(NO)2] (1) 及[PPN][(HS)2Fe(NO)2] (1-PPN)的光譜比較、晶體結構及反應性之探討 30
3-1-1[K-18-crown-6-ether][(HS)2Fe(NO)2] (1) 和[PPN][(HS)2Fe(NO)2] (1-PPN)之結構與光譜 30
3-1-2 Complex 1和1-PPN之EPR光譜比較與電子結構 34
3-1-3 Complex 1在極性溶劑(以NBD-SCN偵測)下釋放H2S和complex 1-PPN在真空以及其逆向的反應性 36
3-2[PPN][(HS)3Fe(NO)] (3)及[PPN]2[(μ-S)Fe(SH)(NO)]2 (4)的光譜比較、晶體結構及反應性之探討 39
3-2-1[PPN][(HS)3Fe(NO)] (3)之光譜和電子結構探討 39
3-2-2[PPN]2[(μ-S)Fe(SH)(NO)]2 (4)之結構與光譜 41
3-3 Complex 1, 2與complex 4的S K-edge比較 47
3-4穩定度比較 49
3-4-1 Rubredoxin [Fe(SH)4]-(5) 與Ferredoxin [(HS)2Fe(μ-S)]22- (6) 49
3-4-2 Complex 2, 4, 6之穩定度比較 51
3-4-3 Complex 1, 3, 5之穩定度比較 52
3-5從理論計算看穩定度 53
3-5-1[(NO)(HS)Fe(μ-S)2]22- (H)之電子結構計算 54
3-5-2[(NO)2Fe(μ-S)2]22-(G),[(NO)(HS)Fe(μ-S)2]22-(H),
[(HS)2Fe(μ-S)2]22-(I)之電子結構計算 55
3-5-3從氧化還原電位說明NO對穩定度的幫助 56
3-5-4氧化數和自由能的理論計算 57
第四章:結論 62
參考資料 65












Figure

Fig. 1-1. 一氧化氮合成酶之催化機制 1
Fig. 1-2. NO分子軌域圖 3
Fig. 1-3. NO與金屬的各種共振型態 4
Fig. 1-4. Cys-NO和GS-NO之結構 6
Fig. 1-5. 兩種一氧化氮儲存模式轉換圖 7
Fig. 1-6. 各種類的DNICs模型 8
Fig. 1-7. 內生性H2S在人體各部位的主要功能 9
Fig. 1-8. 硫化氫之生物合成 11
Fig. 1-9. H2S與不同氧化態的NO可能發生的反應 13
Fig. 1-10. HSNO的反應性和異構物 14
Fig. 1-11. H2S和GSNO的反應 14
Fig. 1-12. H2S和SNP的反應。上:S-nitrosothiol產生(Moore);中:HNO產生(Bian);下:直接與SNP反應(Olabe) 16
Fig. 1-13. 利用Fe3+(P)模擬粒線體內heme-iron center當作催化劑,H2S將NO2─還原之反應機構 17
Fig. 3-1.Structure of 50% [K-18-crown-6-ether] [(HS)2Fe(NO)2] (1) 31
Fig. 3-2. Complex 1之IR光譜(THF) 32
Fig. 3-3. Complex 1之UV-Vis光譜(THF) 32
Fig. 3-4. Structure of 50% [PPN][(HS)2Fe(NO)2] (1-PPN) 33
Fig. 3-5. Complex 1-PPN 之IR光譜(MeCN) 34
Fig. 3-6. X-band EPR spectra of (a) complex 1 in THF at 298 K with gav = 2.028 and (b) complex 1-PPN in THF at 298 K with gav = 2.029, aN = 2.8 G. 34
Fig. 3-7. X-band EPR spectra of (a) complex 1 in THF at 77 K with g1 = 2.039, g2 = 2.026, g3 = 2.013, and (b) complex 1-PPN in THF at 77 K with g1 = 2.040, g2 = 2.027, g3 = 2.014. 36
Fig. 3-8. Fe K-edge spectrum of (a) complex 1 and (b) Complex 1-PPN. 36
Fig. 3-9. (a) UV-vis spectrum of the produced NBD-SH (b) Standard curve 37
Fig. 3-10. Complex 1-PPN和RRS在真空下的轉換 38
Fig. 3-11. Complex 3之IR光譜(THF) 40
Fig. 3-12. Complex 3之EPR光譜(4K, THF),” * ” (g = 2.025)為complex 1-PPN 40
Fig. 3-13. Structure of 50% [PPN]2[(μ-S)Fe(SH)(NO)]2 (4) 41
Fig. 3-14. Structure of 50% [PPN]2[(μ-S)Fe(SH)(NO)]2 (4) (another set) 42
Fig. 3-15. Complex 4之IR光譜(MeCN) 43
Fig. 3-16. Complex 4之IR光譜(KBr) 43
Fig. 3-17. Complex 4之UV-Vis光譜 44
Fig. 3-18. 1H NMR spectrum of [PPN]2[(SH)(NO)Fe(μ-S)]2 (4) in d7-DMF. 45
Fig. 3-19. Complex 4的Fe K-edge pre-edge. 46
Fig. 3-20. Cyclic voltammogram of complex 4 46
Fig. 3-21. Complex 1的S K-edge 48
Fig. 3-22. Complex 4的S K-edge 48
Fig. 3-23. X-band EPR spectrum of complex 5 (g = 9.30 and 4.29) in DMF at 4 K. 49
Fig. 3-24. Structure of 50% [PPN]2[(μ-S)Fe(SH)2]2 (6) 50
Fig. 3-25. (a) 1H NMR spectrum of [PPN]2[(SH)2Fe(μ-S)]2 (6) in d7-DMF. (b) 1H NMR spectrum of [PPN]2[(SH)2Fe(μ-S)]2 (6) and [PPN]2[Fe4S4(SH)4] in d7-DMF. 51
Fig. 3-26. Broken-symmetry Ms = 0 spin density (isovalue = 0.01) of conformation H. 54
Fig. 3-27. Cyclic voltammogram of [(EtS)3Fe(NO)]– 56
Fig. 3-28. Cyclic voltammogram of complex 1-PPN 57

Table
1-1.NO氧化態、鍵數、鍵長及IR吸收範圍 4
2-1. Crystal data and structure refinement for complex 1. 27
2-2. Crystal data and structure refinement for 1-PPN. 28
2-3. Crystal data and structure refinement for complex 4. 29
3-1. Selected Metric Data for [iPr4N]2[(NO)2Fe(μ-S)]2 (2), [PPN]2[(NO)(HS)Fe(μ-S)]2 (4) and [PPN]2[(HS)2Fe(μ-S)]2 (6). 52
3-2. The comparisons of experimental and computational reduction potential. 55
3-3. Selected computational geometry parameters, natural charge, Mulliken spin density, NO vibrational frequencies, Heisenberg J coupling constant and reaction free energy for [(NO)2Fe(μ-S)2Fe(NO)2]2– (G), [(NO)(HS)Fe(μ-S)2Fe(SH)(NO)]2– (H) and [(HS)2Fe(μ-S)2Fe(SH)2]2– (I). 58
3-4. Selected experimental, computational geometry parameters, bond order, natural charge, Mulliken spin density and NO vibrational frequencies for [(HS)2Fe(NO)2]– (1 (experiment)), [(HS)2Fe(NO)2]– (A (computation)) and [(HS)2Fe(NO)2]2– (B (computation)). 59
3-5. Selected computational geometry parameters, bond order, natural charge, Mulliken spin density and NO vibrational frequencies for [(HS)3Fe(NO)]– (C) and [(HS)3Fe(NO)]2– (D). 60
3-6. Selected computational geometry parameters, bond order, natural chrage and Mulliken spin density for [Fe(SH)4]– (E) and [Fe(SH)4]2– (F). 61






Scheme

1-1. RSNO藉由自由基反應產生一氧化氮 6
3-1. Formation of complex 1 30
3-2. (a) complex 1釋放H2S並生成complex 2. (b)由complex 2逆向反應生成complex 1. 37
3-3. NBD-SCN和H2S反應之proposed reaction scheme 38
3-4. Complex 1-PPN在真空下放出H2S以及由RRS逆向反應 38
3-5. Formation of complex 3 and complex 4 39
3-6. Formation of complex 5 and complex 6 49

1. Furchgott, R. F. Z., J. V. Nature 1980, 288, 373-376.
2. Galardon, E.; Roger, T.; Deschamps, P.; Roussel, P.; Tomas, A.; Artaud, I. Inorg. Chem. 2012, 51, 10068–10070.
3. Kuwata, S.; Hidai, M. Coord. Chem. Rev. 2001, 213, 211–305.
4. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. USA 1987, 84, 9265-9269.
5. Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524.
6. Fukuto, J. M.; Hszieh, R.; Chiang, K. T. FASEB J. 1992, 6, A972.
7. Thomas, G.; Ramwell, P. W. Biochem. Biophys. Res. Commun. 1989, 164, 889.
8. Vanin, A. F. FEBS Lett. 1991, 289, 1.
9. Garret, R. H.; Grisham, C. M., Biochemistry 2nd 1999, p 31.
10. Henry, Y.; Ducrocq, C.; Drapier, J.-C.; Servent, D.; Pellat, C.; Guissani, A. Eur. Biophys. J. 1991, 20, 1.
11. Lancaster, J. R. Am. Sci. 1992, 80, 248.
12. Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109.
13. Voet, D.; Voet, J. G., Biochemistry 3rd 2004, pp 671-673.
14. Koshland, D. E. Science 1992, 258, 1861.
15. Stamler, J. S.; Singel, R. D.; Loscalzo, J. Science 1992, 258, 1898-1902.
16. Enemark, J. H.; Feltham, R. D. Coord, Chem. Rev. 1974, 13, 399-406.
17. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc 1999, 121, 10504.
18. Williams, D. L. H. Acc. Chem. Res. 1999, 82, 869-876.
19. Pryor, W. A.; Lightsey, J. W. Science 1981, 214, 435-437.
20. Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155.
21. Reginato, N.; McCrory, C. T. C.; Pervisky, D. L., L. J. Am. Chem. Soc. 1999, 121, 10217.
22. McDonald, C. C.; Philips, W. D.; Mower, H. F. J. Am. Chem. Soc 1965, 87, 3319.
23. Tsai, F. T.; Chiou, S. J.; Tsai, M. C.; Tsai, M. L.; Huang, H. W.; Chiang, M. H.; Liaw, W. F. Inorg. Chem. 2005, 44, 5872-5881.
24. Tsai, M. L.; Liaw, W. F. Inorg. Chem. 2006, 45, 6583-6585.
25. Tsai, M. L.; Hsieh, C. H.; Liaw, W. F. Inorg. Chem. 2007, 46, 5110-5117.
26. Li, L.; Moore, P. K. Trends Pharmacol. Sci. 2008, 29, 84-90.
27. Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. Science 2011, 334, 986-990.
28. Bruce King, S. Free Radic. Biol. Med. 2013, 55, 1-7.
29. Li, Q.; Lancaster, J. R., Jr. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 2013, 35, 21-34.
30. Dombkowski, R. A.; Russell, M. J.; Olson, K. R. Am. J. Physiol. Regul. Inter. Comp. Physiol. 2004, 286, R678-R685.
31. Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. EMBO J. 2001, 20, 6008-6016.
32. Richardson, C. J.; Magee, E. A.; Cummings, J. H. Clin. Chim. Acta 2000, 293, 115-125.
33. Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066-1071.
34. Calvert, J. W.; Coetzee, W. A.; Lefer, D. J. Antioxid. Redox signal. 2010, 12, 1203-1217.
35. Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. Antioxid. Redox signal. 2009, 11, 703-714.
36. Paul, B. D.; Snyder, S. H. Nat. Rev. Mol. Cell. Biol. 2012, 13, 499-507.
37. Kolluru, G. K.; Shen, X.; Bir, S. C.; Kevil, C. G. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 2013, 35, 5-20.
38. Montoya, L. A.; Pearce, T. F.; Hansen, R. J.; Zakharov, L. N.; Pluth, M. D. J. Org. Chem. 2013, 78, 6550-7.
39. Chen, Y.-H.; Tsai, J.-C.; Cheng, T.-H.; Yuan, S.-S.; Wang, Y.-M. Biosens. Bioelectron. 2014, 56, 117-123.
40. Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Modis, K.; Panopoulos, P.; Asimakopoulou, A.; Gero, D.; Sharina, I.; Martin, E.; Szabo, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9161–9166.
41. Filipovic, M. R.; Miljkovic, J.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Koppenol, W. H.; Lippard, S. J.; Ivanovic-Burmazovic, I. J. Am. Chem. Soc. 2012, 134, 12016-27.
42. Tchir, P. O.; Spratley, R. D. Can. J. Chem. 1975, 53, 2311-2317.
43. Tchir, P. O.; Spratley, R. D. Can.J. Chem. 1975, 53, 2318-2330.
44. Tchir, P. O.; Spratley, R. D. Can.J. Chem. 1975, 53, 2331-2336.
45. Timerghazin, Q. K.; Peslherbe, G. H.; English, A. M. Phys.Chem. Chem. Phys. 2008, 10, 1532-1539.
46. Filipovic, M. R.; Miljkovic, J.; Allgäuer, A.; Chaurio, R.; Shubina, T.; Herrmann, M.; Ivanovic‑Burmazovic, I. Biochem. J. 2012, 441, 609-621.
47. Miljkovic, J. L.; Kenkel, I.; Ivanovic-Burmazovic, I.; Filipovic, M. R. Angew. Chem. Int. Ed. Engl. 2013, 52, 12061–12064.
48. Filipovic, M. R.; Ivanovic-Burmazovic, I. Chem. Eur. J. 2012, 13538–13540.
49. Yong, Q.-C.; Hu, L.-F.; Wang, S.; Huang, D.; Bian, J.-S. Cardiovasc. Res. 2010, 88, 482-491.
50. Tocchetti, C. G.; Stanley, B. A.; Murray, C. I.; Sivakumaran, V.; Donzelli, S.; Mancardi, D.; Pagliaro, P.; Gao, W. D.; van Eyk, J.; Kass, D. A. Antioxid. Redox signaling 2011, 14, 1687-1698.
51. Whiteman, M.; Armstrong, J. S.; Chu, S. H.; Jia‐Ling, S.; Wong, B. S.; Cheung, N. S.; Halliwell, B.; Moore, P. K. J. Neurochem. 2004, 90, 765-768.
52. Whiteman, M.; Li, L.; Kostetski, I.; Chu, S. H.; Siau, J. L.; Bhatia, M.; Moore, P. K. Biochem. Biophys. Res. Commun. 2006, 343, 303-310.
53. Quiroga, S. L.; Almaraz, A. E.; Amorebieta, V. T.; Perissinotti, L. L.; Olabe, J. A. Chem. Eur. J. 2011, 17, 4145–4156.
54. Ma, E. S.; Rettig, S. J.; Patrick, B. O.; James, B. R. Inorg. Chem. 2012, 51, 5427–5434.
55. Perez-Torrente, J. J.; Jimenez, M. V.; Hernandez-Gruel, M. A.; Fabra, M. J.; Lahoz, F. J.; Oro, L. A. Chem. Eur. J. 2009, 15, 12212–12222.
56. Mudalige, D. C.; Ma, E. S.; Rettig, S. J.; James, B. R.; Cullen, W. R. Inorg. Chem. 1997, 36, 5426–5427.
57. Sellman, D.; Lechner, P.; Knoch, F.; Moll, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 552–553.
58. Venkateswara, P.; Holm, R. H. Chem. Rev. 2004, 104, 527–559.
59. Jove, F. A.; Pariya, C.; Scoblete, M.; Yap, G. P.; Theopold, K. H. Chem. Eur. J. 2011, 17, 1310–1318.
60. Pavlik, J. W.; Noll, B. C.; Oliver, A. G.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 2010, 49, 1017–1026.
61. Dhifet, M.; Belkhiria, M. S.; Daran, J. C.; Nasri, H. Acta Crystallogr. Sect . E. 2009, 65, m967–m968.
62. Arif, A. M.; Hefner, J. G.; Jones, R. A.; Koschmieder, S. U. J. Coord. Chem. 1991, 23, 13-19.
63. Vaira, M. D.; Midollini, S.; Sacconi, L. Inorg. Chem. 1977, 16, 1518–1524.
64. Cai, L.; Holm, R. H. J. Am. Chem. Soc. 1994, 116, 7177–7188.
65. Balch, A. L.; Cornman, C. R.; Safari, N. Organometallics 1990, 9, 2420–2421.
66. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. G.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 09, Revision A.02. In Gaussian, Inc.
: Wallingford CT, 2009.
67. Perdew, J. P.; Yang, W. Phys. Rev. B 1986, 33, 8800–8802.
68. Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
69. Perdew, J. P. P. Chem. Chem. Phys. 1986, 33, 8822–8824.
70. Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111–8116.
71. Hay, P. J. J. Chem. Phys. 1977, 66, 4377–4384.
72. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650–654.
73. Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033–1037.
74. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062–1065.
75. Brothers, S. M.; Darensbourg, M. Y.; Hall, M. B. Inorg. Chem. 2011, 50, 8532–8540.
76. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117–129.
77. Kalyvas, H.; Coucouvanis, D. Polyhedron 2007, 26, 4765-4778.
78. Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799-8806.
79. Venkateswara Rao, P.; Holm, R. H. Chem. Rev. 2003, 104, 527-560.
80. Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2007, 129, 12626–12627.
81. Thomas, J. T.; Robertson, J. H.; Cox, E. G. Acta Crystallogr. 1958, 11, 599–604.
82. Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799–8806.
83. Seyferth, D.; Gallagher, M. K. Organometallics 1986, 5, 539-548.
84. Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357-1362.
85. Harrop, T. C.; Song, D.; Lippard, S. J. J. Am. Chem. Soc. 2006, 126, 3528–3529.
86. Harrop, T. C.; Song, D.; Lippard, S. J. Inorg. Chem. 2007, 101, 1730–1738.
87. Tsou, C. C.; Tsai, F. T.; Chen, H. Y.; Hsu, I. J.; Liaw, W. F. Inorg. Chem. 2013, 52, 1631–1639.
88. Hung, M.-C.; Tsai, M.-C.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041–6047.
89. Lu, T.-T.; Lai, S.-H.; Li, Y.-W.; Hsu, I. J.; Jang, L.-Y.; Lee, J.-F.; Chen, I. C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 5396-5406.
90. Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I. J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579-9591.
91. Praneeth, V. K. K.; Näther, C.; Peters, G.; Lehnert, N. Inorg. Chem. 2006, 45, 2795-2811.
92. Hopmann, K. H.; Conradie, J.; Ghosh, A. J. Phys. Chem. B 2009, 113, 10540–10547.
93. Ye, S. N., F. J. Am. Chem. Soc. 2010, 132, 3646–3647.
94. Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602–15610.
95. Tennyson, A. G.; Dhar, S.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15087–15098.
96. Lu, T.-T.; Huang, H.-W.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9027–9035.
97. Kalyvas, H.; Coucouvanis, D. Inorganic Chemistry 2006, 45, 8462-8464.
98. Lu, T.-T.; Lai, S.-H.; Li, Y.-W.; Hsu, I.-J.; Jang, L.-Y.; Lee, J.-F.; Chen, I.-C.; Liaw, W.-F. Inorg. Chem. 2011, 50, 5396–5406.
99. Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2014.
100. Hoveyda, H. R.; Holm, R. H. Inorg. Chem. 1997, 36, 4571–4578.
101. Thomas, J. T. R., J. H.; Cox, E. G. Acta Crystallogr. 1958, 11, 599-604.
102. Sanina, N. A. F.; S., O.; Aldoshin, S. M.; Ovanesyana, N. S. Russ. Chem. Bull. 2000, 1109-1112.
103. Rose, K.; Shadle, S. E.; Glaser, T.; de Vries, S.; Cherepanov, A.; Canters, G. W.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 2353–2363.
104. Hopmann, K. H.; Ghosh, A.; Noodleman, L. Inorg. Chem. 2009, 48, 9155–9165.
105. Jaworska, M.; Stasicka, Z. New J. Chem. 2005, 29, 604–612.
106. Schmitt, E. A.; Noodleman, L.; Baerends, E. J.; Hendrickson, D. N. J. Am. Chem. Soc. 1992, 114, 6109–6119.
107. Hopmann, K. H.; Noodleman, L.; Ghosh, A. Chem. Eur. J. 2010, 16, 10397–10408.
108. Koch, S. A.; Maelia, L. E. J. Am. Chem. Soc. 1983, 105, 5944–5945.
109. Yeh, S.-W.; Lin, C.-W.; Li, Y.-W.; Hsu, I.-J.; Chen, C.-H.; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2012, 51, 4076–4087.
110. Hagen, K. S.; Watson, A. D.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 3905–3913.
111. Li, M. B., D.; Bill, E. N., F.; Weyhermüller, T.; Blum, N.; Sellmann, D.; Wieghardt, K. Inorg. Chem. 2002, 41, 3444–3456.
112. Conradie, J.; Quarless, D. A. J.; Hsu, H.-F.; Harrop, T. C.; Lippard, S. J.; Koch, S. A.; Ghosh, A. J. Am. Chem. Soc 2007, 129, 10446–10456.
113. Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Chem. Phys. Lett. 2000, 319, 223–230.
114. Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040–6050.
115. Maelia, L. E.; Millar, M.; Koch, S. A. Inorg. Chem. 1992, 31, 4594–4600.
116. Suzuki, N.; Higuchi, T.; Urano, Y.; Kikuchi, K.; Uekusa, H.; Ohashi, Y.; Uchida, T.; Kitagawa, T.; Nagano, T. J. Am. Chem. Soc 1999, 121, 11571–11572.
117. Das, P. K.; Chatterjee, S.; Samanta, S.; Dey, A. Inorg. Chem. 2012, 51, 10704–10714.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *