帳號:guest(18.217.147.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佳靜
作者(外文):Tsai, Chia-Ching
論文名稱(中文):合成配位基導向探針並運用於探討蛋白質-蛋白質間作用力
論文名稱(外文):Synthesis of Ligand-directed Protein Labeling Probes for Capturing Protein-protein Interactions
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):林俊宏
陳玉如
林伯樵
林俊成
口試委員(外文):Chun-Hung Lin
Yu-Ju Chen
Po-Chiao Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023509
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:255
中文關鍵詞:蛋白質修飾蛋白質蛋白質間作用力配位基導向
外文關鍵詞:protein modificationprotein protein interactionsligand-directed
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
利用化學結合法修飾蛋白質為目前研究蛋白質體學(proteomics)的關鍵技術之一,並且有助於探討蛋白質聯絡網,協助拼湊複雜的生物機制。利用光親和性基團位向專一性地修飾於蛋白質活性中心附近,建構蛋白質探針,將蛋白質探針丟入未知複雜系統中,當未知蛋白質與蛋白質探針因具親和力互相結合後,經由不破壞其作用力之溫和照光便可將蛋白質探針與未知蛋白質交聯,藉此探討蛋白質探針與未知蛋白質間的交互關係。
本論文合成了AGD(affinity-guided DMAP)-甘露醣探針,利用甘露醣與刀豆凝集素之間親和力成功將生物素選擇性地修飾於刀豆凝集素的活性中心附近。
另外,還合成了不同長度的乳糖三級胺催化劑與一級胺探針,結合CDMT的化學,活化蛋白質的羧基,成功將生物素標記於蓖麻凝集素活性中心附近,利用帶有鏈黴親和素的固相載體將之純化,並且經由照光將修飾於蛋白質上的光敏化斷裂基團光解,將蓖麻凝集素從固相載體上釋放,最後利用CuAAC反應再一次修飾生物素。
另一方面,本論文將光親和性基團修飾於蓖麻凝集素的活性中心附近,利用帶有單元抗生物素蛋白的磁珠固相載體將蛋白質純化,建構凝集素探針。最後,利用蛋白質探針與醣蛋白-卵清蛋白光照交聯,並將此系統應用於蛋白質池與大腸桿菌溶解產物中,於單純系統與複雜系統中均得到交聯之產物。
Protein labeling probes not only become a powerful tool for protein trafficking but also provide a route to elucidate protein-protein interactions. By assembling a photoactive group near the binding site of the protein probe, the unknown interacting protein(s) with high affinity toward the protein probe can be captured under mild photo-activation without disturbing protein structure.
In this thesis, We synthesized dimethylaminopyridine (AGD)-mannose probe to label Concanavalin A (Con A) with a biotin at the place near the ligand binding site with high selectivity because of the affinity between mannose and ConA.
We also synthesized the lactose-tethered tertiary amine with different lengths of linkers and primary amine probes for Ricinus communis Agglutinin (RCA120) labeling using CDMT chemistry approach which activated the carboxylate group. The biotinylated RCA120 was purified by agarose streptavidin beads and then photocleaved the o-nitrobenzyl ether tether to release the labeled protein from the solid support and the resulting biotinylated RCA120 was further modified by click reaction.
Moreover, we constructed RCA120 lectin probe by labeling the photoaffinity group at the place near the lactose binding site and the purification of labeled protein was achieved by using monomeric avidin magnetic beads. We photocrosslinked our RCA120 lectin probe to glycoprotein-Ovalbumin (OVA) and applied this system to the protein pool and E. Coli. cell lysates. We successfully got the photocrosslinked product in both the pure buffer condition and mixture condition.
第一章 緒論 1
1.1 前言 1
1.2 蛋白質間交互作用(protein-protein interactions) 1
1.2.1 蛋白質間作用力之種類 3
1.2.2 研究蛋白質間作用力之方法 4
1.2.2.1 免疫沉澱法(immunoprecipitation)與蛋白質沉澱法(pull down assay) 5
1.2.2.2 遠端西方墨點法(Far-Western Blot) 7
1.2.2.3 雙雜交(two-hybrid)系統 9
1.2.2.4 分子影像法(molecular image) 11
1.2.2.5 化學交聯法(chemical crosslinking) 12
1.2.2.6 標記轉移法(label transfer) 18
1.3 蛋白質修飾(protein modification) 24
1.3.1 融合蛋白(fusion protein) 25
1.3.2 胜肽鏈(peptide) 26
1.3.2.1 組胺酸標籤(His tag) 27
1.3.2.2 四半胱胺酸標籤(tetracysteine, FlAsH) 28
1.3.2.3 Sortase A 28
1.3.2.4 硫辛酸連接酶(lipoic acid ligase, LplA) 29
1.3.3 化學結合法 30
1.3.3.1 殘基專一性(residue-specific) 30
1.3.3.2 位相專一性(site-specific) 32
1.3.3.2.1 生物正交結合法(bioorthogonal chemistry) 33
1.3.3.2.2 配位基導向標記法(Ligand-directed labeling method)35
1.4 光親和性官能基(Photoaffinity group) 39
1.5 光敏化斷裂官能基(photocleavage group) 42
1.6 半乳醣凝集素(Galectin) 44
1.6.1 Galectin-1與漿細胞(plasma cell)的關係 45
1.7 研究動機與目的 47
第二章 親和力導向DMAP催化(AGD)探針合成與凝集素標記 49
壹. 親和力導向DMAP催化(AGD)探針的設計與機制 49
貳. 親和力導向DMAP催化(AGD)探針的實驗結果與討論 50
2.1 Sugar-tethered DMAP(STD)的合成 50
2.1.1. 4-(methylamino)pyridine的合成 50
2.1.2. 乳醣配位基探針的合成 52
2.1.3. 甘露醣配位基探針的合成 53
2.2 Acyl donor的合成 55
2.2.2. 光親和性基團acyl donor 57
2.2.3. 生物素(biotin)acyl donor 59
2.3 Acyl donor穩定度測試 60
2.4 AGD 探針應用於不同蛋白質的標記 62
2.5 AGD探針於蛋白質池中標記ConA與RCA120 71
參. 總結 74
第三章 三級胺(TA)探針的合成與凝集素標記之蛋白質間作用力的研究 75
壹. 三級胺(Tertiary amine, TA)探針的設計與機制 75
貳. 三級胺(Tertiary amine, TA)探針的實驗結果與討論 77
2.1 Sugar-tethered tertiary amine(STTA)的合成 77
2.1.1. 短鏈STTA的合成 81
2.1.2. 中鏈與長鏈STTA的合成 82
2.1.3. N-乙醯乳糖胺(N-acetyl-lactosamine,LacNAc)STTA合成 85
2.2 Primary amine tag的合成 86
2.2.1. 螢光primary amine tag的合成 87
2.2.2. 光解primary amine tag的合成 88
2.2.2.1 化合物44的合成 89
2.2.2.2 化合物48的合成 90
2.2.2.3 化合物52的合成 90
2.2.3. 光親和性基團primary amine tag的合成 91
2.3 三級胺(TA)探針之初步應用 92
2.3.1 三級胺(TA)探針螢光標記於RCA120 92
2.3.2 三級胺(TA)探針生物素標記於Galectin-1 98
2.4 光解primary amine tag標記於RCA120之應用 99
2.4.1 光解primary amine tag標記RCA120之純化 101
2.4.2 光解primary amine tag標記RCA120之光解 103
2.4.3 光解primary amine tag標記RCA120之生物結合修飾 107
2.5 光親和性基團primary amine tag標記於RCA120之應用 109
2.5.1 光親和性基團primary amine tag標記RCA120之效率 111
2.5.2 光親和性基團primary amine tag標記RCA120之純化 112
2.6 蛋白質探針在單純環境中進行蛋白質間交聯反應之研究 116
2.7 蛋白質探針在複雜環境中進行蛋白質間交聯反應之研究 127
參. 總結 130
第四章 結論 132
第五章 實驗部分 134
參考文獻及資料 184
附錄 196
1. Blad, C. C.; Tang, C.; Offermanns, S., G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat. Rev. Drug. Discov. 2012, 11, 603-619.
2. Kagan, J. C., Recycling Endosomes and TLR Signaling-The Rab11 GTPase Leads the Way. Immunity 2010, 33, 578-580.
3. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M; Roberts, K.; Walter, P., In Molecular Biology of the Cell. 4th edition, Garland Science Press: New York, 2002; pp 1-1392.
4. Zampighi, G. A.; Hall, J. E.; Ehring, G. R.; Simon, S. A., The Structural Organization and Protein-Composition of Lens Fiber Junctions. J. Cell Biol. 1989, 108, 2255-2275.
5. Braun, P.; Gingras, A. C., History of protein-protein interactions: From egg-white to complex networks. Proteomics 2012, 12, 1478-1498.
6. Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Seraphin, B., The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 2001, 24, 218-229.
7. MacBeath, G., Protein microarrays and proteomics. Nat. Genet. 2002, 32, 526-532.
8. Fields, S.; Song, O. K., A Novel Genetic System to Detect Protein Protein Interactions. Nature 1989, 340, 245-246.
9. Liljas, A.; Rossmann, M. G., X-Ray Studies of Protein Interactions. Annu. Rev. Biochem. 1974, 43, 475-507.
10. Zuiderweg, E. R. P., Mapping protein-protein interactions in solution by NMR Spectroscopy. Biochemistry 2002, 41, 1-7.
11. Salwinski, L.; Eisenberg, D., Computational methods of analysis of protein-protein interactions. Curr. Opin. Struc. Biol. 2003, 13, 377-382.
12. Acuner Ozbabacan, S. E.; Engin, H. B.; Gursoy, A.; Keskin, O., Transient protein–protein interactions. Protein Eng. Des. Sel. 2011.
13. Braig, K.; Otwinowski, Z.; Hegde, R.; Boisvert, D. C.; Joachimiak, A.; Horwich, A. L.; Sigler, P. B., The Crystal-Structure of the Bacterial Chaperonin Groel at 2.8-Angstrom. Nature 1994, 371, 578-586.
14. Krishna, S. S.; Aravind, L., The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. J. Struct. Biol. 2010, 172, 294-299.
15. Vetter, I. R.; Wittinghofer, A., Signal transduction - The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299-1304.
16. Monti, M.; Orru, S.; Pagnozzi, D.; Pucci, P., Interaction proteomics. Biosci. Rep. 2005, 25, 45-56.
17. Hall, R., In Protein-Protein Interactions, Fu, H., Ed. Humana Press, 2004; pp 167-174.
18. Kluger, R.; Alagic, A., Chemical cross-linking and protein-protein interactions - a review with illustrative protocols. Bioorg. Chem. 2004, 32, 451-472.
19. Liu, B.; Archer, C. T.; Burdine, L.; Gillette, T. G.; Kodadek, T., Label transfer chemistry for the characterization of protein-protein interactions. J. Am. Chem. Soc. 2007, 129, 12348-12349.
20. Phizicky, E. M.; Fields, S., Protein-Protein Interactions - Methods for Detection and Analysis. Microbiol. Rev. 1995, 59, 94-123.
21. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. Science 2001, 293, 2101-2105.
22. Jain, A.; Liu, R. J.; Xiang, Y. K.; Ha, T., Single-molecule pull-down for studying protein interactions. Nat. Protoc. 2012, 7, 445-452.
23. Arifuzzaman, M.; Maeda, M.; Itoh, A.; Nishikata, K.; Takita, C.; Saito, R.; Ara, T.; Nakahigashi, K.; Huang, H. C.; Hirai, A.; Tsuzuki, K.; Nakamura, S.; Altaf-Ul-Amin, M.; Oshima, T.; Baba, T.; Yamamoto, N.; Kawamura, T.; Ioka-Nakamichi, T.; Kitagawa, M.; Tomita, M.; Kanaya, S.; Wada, C.; Mori, H., Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 2006, 16, 686-691.
24. Detection of protein-protein interactions using the GST fusion protein pull-down technique. Nat. Methods. 2004, 1, 275-276.
25. Kaelin, W. G.; Krek, W.; Sellers, W. R.; Decaprio, J. A.; Ajchenbaum, F.; Fuchs, C. S.; Chittenden, T.; Li, Y.; Farnham, P. J.; Blanar, M. A.; Livingston, D. M.; Flemington, E. K., Expression Cloning of a Cdna-Encoding a Retinoblastoma-Binding Protein with E2f-Like Properties. Cell 1992, 70, 351-364.
26. Sato, Y.; Kameya, M.; Arai, H.; Ishii, M.; Igarashi, Y., Detecting weak protein-protein interactions by modified far-western blotting. J. Biosci. Bioeng. 2011, 112, 304-307.
27. Dmitrova, M.; Younes-Cauet, G.; Oertel-Buchheit, P.; Porte, D.; Schnarr, M.; Granger-Schnarr, M., A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol. Gen. Genet. 1998, 257, 205-212.
28. Vasavada, H. A.; Ganguly, S.; Germino, F. J.; Wang, Z. X.; Weissman, S. M., A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc Natl Acad Sci 1991, 88, 10686-10690.
29. Bruckner, A.; Polge, C.; Lentze, N.; Auerbach, D.; Schlattner, U., Yeast Two-Hybrid, a Powerful Tool for Systems Biology. Int J Mol Sci 2009, 10, 2763-2788.
30. Ehrhard, K. N.; Jacoby, J. J.; Fu, X. Y.; Jahn, R.; Dohlman, H. G., Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat. Biotechnol. 2000, 18, 1318-1318.
31. Broder, Y. C.; Katz, S.; Aronheim, A., The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 1998, 8, 1121-1124.
32. Hubsman, M.; Yudkovsky, G.; Aronheim, A., A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res. 2001, 29.
33. Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y., Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Bio. 2002, 3, 906-918.
34. Issad, T.; Jockers, R., In Transmembrane Signaling Protocols, Ali, H.; Haribabu, B., Eds. Humana Press, 2006; pp 195-209.
35. Hu, C. D.; Chinenov, Y.; Kerppola, T. K., Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 2002, 9, 789-798.
36. Miernyk, J. A.; Thelen, J. J., Biochemical approaches for discovering protein-protein interactions. Plant J. 2008, 53, 597-609.
37. Veronese, F. M.; Pasut, G., PEGylation, successful approach to drug delivery. Drug Discov Today 2005, 10, 1451-1458.
38. Swaim, C. L.; Smith, J. B.; Smith, D. L., Unexpected products from the reaction of the synthetic cross-linker 3,3 '-dithiobis(sulfosuccinimidyl propionate), DTSSP with peptides. J. Am. Soc. Mass. Spectrom. 2004, 15, 736-749.
39. Lomant, A. J.; Fairbanks, G., Chemical Probes of Extended Biological Structures - Synthesis and Properties of Cleavable Protein Cross-Linking Reagent [Dithiobis(Succinimidyl-S-35 Propionate). J. Mol. Biol. 1976, 104, 243-261.
40. Sinz, A., Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 2006, 25, 663-682.
41. Dihazi, G. H.; Sinz, A., Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2005-2014.
42. Ghosh, S. S.; Kao, P. M.; Mccue, A. W.; Chappelle, H. L., Use of Maleimide-Thiol Coupling Chemistry for Efficient Syntheses of Oligonucleotide-Enzyme Conjugate Hybridization Probes. Bioconjugate Chem. 1990, 1, 71-76.
43. Egnaczyk, G. F.; Greis, K. D.; Stimson, E. R.; Maggio, J. E., Photoaffinity cross-linking of Alzheimer's disease amyloid fibrils reveals interstrand contact regions between assembled beta-amyloid peptide subunits. Biochemistry 2001, 40, 11706-11714.
44. Klockenbusch, C.; Kast, J., Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin beta 1. J Biomed. Biotechnol. 2010.
45. Andrews, S. S.; Hill, Z. B.; Perera, B. G. K.; Maly, D. J., Label Transfer Reagents to Probe p38 MAPK Binding Partners. Chembiochem 2013, 14, 209-216.
46. Tamura, T.; Tsukiji, S.; Hamachi, I., Native FKBP12 Engineering by Ligand-Directed Tosyl Chemistry: Labeling Properties and Application to Photo-Cross-Linking of Protein Complexes in Vitro and in Living Cells. J. Am. Chem. Soc. 2012, 134, 2216-2226.
47. Tomohiro, T.; Kato, K.; Masuda, S.; Kishi, H.; Hatanaka, Y., Photochemical Construction of Coumarin Fluorophore on Affinity-Anchored Protein. Bioconjugate Chem. 2011, 22, 315-318.
48. Ai, H. W.; Shen, W. J.; Sagi, A.; Chen, P. R.; Schultz, P. G., Probing Protein-Protein Interactions with a Genetically Encoded Photo-crosslinking Amino Acid. Chembiochem 2011, 12, 1854-1857.
49. Chou, C. J.; Uprety, R.; Davis, L.; Chin, J. W.; Deiters, A., Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chem Sci 2011, 2, 480-483.
50. Prasher, D. C.; Eckenrode, V. K.; Ward, W. W.; Prendergast, F. G.; Cormier, M. J., Primary Structure of the Aequorea-Victoria Green-Fluorescent Protein. Gene 1992, 111, 229-233.
51. Shah, N. H.; Muir, T. W., Inteins: nature's gift to protein chemists. Chem Sci 2014, 5, 446-461.
52. Lin, P.-C.; Ueng, S.-H.; Tseng, M.-C.; Ko, J.-L.; Huang, K.-T.; Yu, S.-C.; Adak, A. K.; Chen, Y.-J.; Lin, C.-C., Site-Specific Protein Modification through CuI-Catalyzed 1,2,3-Triazole Formation and Its Implementation in Protein Microarray Fabrication. Angew. Chem. Int. Ed. 2006, 45, 4286-4290.
53. Bornhorst, J. A.; Falke, J. J., Purification of proteins using polyhistidine affinity tags. Method Enzymol. 2000, 326, 245-254.
54. Griffin, B. A.; Adams, S. R.; Tsien, R. Y., Specific covalent labeling of recombinant protein molecules inside live cells. Science 1998, 281, 269-272.
55. Adams, S. R.; Campbell, R. E.; Gross, L. A.; Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.; Tsien, R. Y., New biarsenical Ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. J. Am. Chem. Soc. 2002, 124, 6063-6076.
56. Miller, L. W.; Cornish, V. W., Selective chemical labeling of proteins in living cells. Curr. Opin. Chem. Biol. 2005, 9, 56-61.
57. Theile, C. S.; Witte, M. D.; Blom, A. E. M.; Kundrat, L.; Ploegh, H. L.; Guimaraes, C. P., Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 2013, 8, 1800-1807.
58. Puthenveetil, S.; Liu, D. S.; White, K. A.; Thompson, S.; Ting, A. Y., Yeast Display Evolution of a Kinetically Efficient 13-Amino Acid Substrate for Lipoic Acid Ligase. J. Am. Chem. Soc. 2009, 131, 16430-16438.
59. Fernandez-Suarez, M.; Baruah, H.; Martinez-Hernandez, L.; Xie, K. T.; Baskin, J. M.; Bertozzi, C. R.; Ting, A. Y., Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 2007, 25, 1483-1487.
60. Hooker, J. M.; Esser-Kahn, A. P.; Francis, M. B., Modification of aniline containing proteins using an oxidative coupling strategy. J. Am. Chem. Soc. 2006, 128, 15558-15559.
61. Gildersleeve, J. C.; Oyelaran, O.; Simpson, J. T.; Allred, B., Improved procedure for direct coupling of carbohydrates to proteins via reductive amination. Bioconjugate Chem. 2008, 19, 1485-1490.
62. Tanaka, K.; Kamatani, M.; Mori, H.; Fujii, S.; Ikeda, K.; Hisada, M.; Itagaki, Y.; Katsumura, S., The inhibitory mechanism of bovine pancreatic phospholipase A(2) by aldehyde terpenoids. Tetrahedron 1999, 55, 1657-1686.
63. Tanaka, K.; Fujii, Y.; Fukase, K., Site-Selective and Nondestructive Protein Labeling through Azaelectrocyclization-Induced Cascade Reactions. Chembiochem 2008, 9, 2392-2397.
64. Oya, T.; Hattori, N.; Mizuno, Y.; Miyata, S.; Maeda, S.; Osawa, T.; Uchida, K., Methylglyoxal modification of protein - Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J. Biol. Chem. 1999, 274, 18492-18502.
65. Chen, G.; Heim, A.; Riether, D.; Yee, D.; Milgrom, Y.; Gawinowicz, M. A.; Sames, D., Reactivity of functional groups on the protein surface: Development of epoxide probes for protein labeling. J. Am. Chem. Soc. 2003, 125, 8130-8133.
66. Schlick, T. L.; Ding, Z. B.; Kovacs, E. W.; Francis, M. B., Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718-3723.
67. Hooker, J. M.; Kovacs, E. W.; Francis, M. B., Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 2004, 126, 3718-3719.
68. Joshi, N. S.; Whitaker, L. R.; Francis, M. B., A three-component Mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 2004, 126, 15942-15943.
69. McFarland, J. M.; Joshi, N. S.; Francis, M. B., Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 2008, 130, 7639-7644.
70. Guo, H. M.; Minakawa, M.; Ueno, L.; Tanaka, F., Synthesis and evaluation of a cyclic imine derivative conjugated to a fluorescent molecule for labeling of proteins. Bioorg. Med. Chem. Lett. 2009, 19, 1210-1213.
71. Bernardes, G. J. L.; Chalker, J. M.; Errey, J. C.; Davis, B. G., Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: Versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 2008, 130, 5052-5023.
72. Chalker, J. M.; Bernardes, G. J. L.; Lin, Y. A.; Davis, B. G., Chemical Modification of Proteins at Cysteine: Opportunities in Chemistry and Biology. Asian J. Chem. 2009, 4, 630-640.
73. Chalker, J. M.; Lin, Y. A.; Boutureira, O.; Davis, B. G., Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine. Chem. Commun. 2009, 3714-3716.
74. Basle, E.; Joubert, N.; Pucheault, M., Protein Chemical Modification on Endogenous Amino Acids. Chem. Biol. 2010, 17, 213-227.
75. Minnihan, E. C.; Yokoyama, K.; Stubbe, J., Unnatural amino acids: better than the real things? F1000 Biol Reports 2009.
76. Blackman, M. L.; Royzen, M.; Fox, J. M., Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130, 13518-13519.
77. Lang, K.; Davis, L.; Wallace, S.; Mahesh, M.; Cox, D. J.; Blackman, M. L.; Fox, J. M.; Chin, J. W., Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels-Alder Reactions. J. Am. Chem. Soc. 2012, 134, 10317-10320.
78. Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.; Soriano del Amo, D.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.; Wu, P., Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study. Angew. Chem. Int. Ed. 2011, 50, 8051-8056.
79. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G., Analysis and Optimization of Copper-Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879-9883.
80. del Amo, D. S.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans. J. Am. Chem. Soc. 2010, 132, 16893-16899.
81. Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R., A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 2006, 1, 644-648.
82. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046-15047.
83. Ning, X.; Temming, R. P.; Dommerholt, J.; Guo, J.; Ania, D. B.; Debets, M. F.; Wolfert, M. A.; Boons, G.-J.; van Delft, F. L., Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition. Angew. Chem. Int. Ed. 2010, 49, 3065-3068.
84. Lin, Y. Y. A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R. S.; Davis, B. G., Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins. J. Am. Chem. Soc. 2013, 135, 12156-12159.
85. Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W., Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J. Am. Chem. Soc. 2011, 133, 11418-11421.
86. Liang, G. L.; Ren, H. J.; Rao, J. H., A biocompatible condensation reaction for controlled assembly of nanostructures in living cells (vol 2, pg 54, 2009). Nat Chem 2010, 2, 239-239.
87. Lang, K.; Chin, J. W., Bioorthogonal Reactions for Labeling Proteins. ACS Chem. Biol. 2014, 9, 16-20.
88. Kunishima, M.; Nakanishi, S.; Nishida, J.; Tanaka, H.; Morisaki, D.; Hioki, K.; Nomoto, H., Convenient modular method for affinity labeling (MoAL method) based on a catalytic amidation. Chem. Commun. 2009, 5597-5599.
89. Li, Z. Q.; Hao, P. L.; Li, L.; Tan, C. Y. J.; Cheng, X. M.; Chen, G. Y. J.; Sze, S. K.; Shen, H. M.; Yao, S. Q., Design and Synthesis of Minimalist Terminal Alkyne-Containing Diazirine Photo-Crosslinkers and Their Incorporation into Kinase Inhibitors for Cell- and Tissue-Based Proteome Profiling. Angew. Chem. Int. Ed. 2013, 52, 8551-8556.
90. Tomohiro, T.; Inoguchi, H.; Masuda, S.; Hatanaka, Y., Affinity-based fluorogenic labeling of ATP-binding proteins with sequential photoactivatable cross-linkers. Bioorg. Med. Chem. Lett. 2013, 23, 5605-5608.
91. Takaoka, Y.; Ojida, A.; Hamachi, I., Protein Organic Chemistry and Applications for Labeling and Engineering in Live-Cell Systems. Angew. Chem. Int. Ed. 2013, 52, 4088-4106.
92. Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I., Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 2009, 5, 341-343.
93. Fujishima, S. H.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I., Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells. J. Am. Chem. Soc. 2012, 134, 3961-3964.
94. Chang, T. C.; Lai, C. H.; Chien, C. W.; Liang, C. F.; Adak, A. K.; Chuang, Y. J.; Chen, Y. J.; Lin, C. C., Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate-Lectin Interactions. Bioconjugate Chem. 2013, 24, 1895-1906.
95. Hashimoto, M.; Hatanaka, Y., Recent progress in diazirine-based photoaffinity labeling. Eur. J. Org. Chem. 2008, 2513-2523.
96. Singh, A.; Westheimer, F. H.; Thornton, E. R., Photolysis of Diazoacetylchymotrypsin. J. Biol. Chem. 1962, 237, 3006-3008.
97. Meier, H.; Zeller, K. P., Wolff Rearrangement of Alpha-Diazo Carbonyl-Compounds. Angew. Chem. Int. Ed.1975, 14, 32-43.
98. Graham, W. H., Reaction of Imines with Difluoramine . A Method of Preparation of Diazirines. J. Am. Chem. Soc. 1966, 88, 4677-4681.
99. Smith, R. A. G.; Knowles, J. R., Preparation and Photolysis of 3-Aryl-3h-Diazirines. J. Chem. Soc., Perkin Trans. 2 1975, 686-694.
100. Brunner, J.; Senn, H.; Richards, F. M., "3-Trifluoromethyl-3-Phenyldiazirine - a New Carbene Generating Group for Photolabeling Reagents. J. Biol. Chem. 1980, 255, 3313-3318.
101. Leriche, G.; Chisholm, L.; Wagner, A., Cleavable linkers in chemical biology. Bioorg. Med. Chem. 2012, 20, 571-582.
102. Olejnik, J.; Sonar, S.; Krzymanskaolejnik, E.; Rothschild, K. J., Photocleavable Biotin Derivatives - a Versatile Approach for the Isolation of Biomolecules. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7590-7594.
103. Holmes, C. P., Model studies for new o-nitrobenzyl photolabile linkers: Substituent effects on the rates of photochemical cleavage. J. Org. Chem. 1997, 62, 2370-2380.
104. Teichberg, V. I.; Silman, I.; Beitsch, D. D.; Resheff, G., Beta-D-Galactoside Binding-Protein from Electric Organ Tissue of Electrophorus-Electricus. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 1383-1387.
105. Barondes, S. H.; Castronovo, V.; Cooper, D. N. W.; Cummings, R. D.; Drickamer, K.; Feizi, T.; Gitt, M. A.; Hirabayashi, J.; Hughes, C.; Kasai, K.; Leffler, H.; Liu, F. T.; Lotan, R.; Mercurio, A. M.; Monsigny, M.; Pillai, S.; Poirer, F.; Raz, A.; Rigby, P. W. J.; Rini, J. M.; Wang, J. L., Galectins - a Family of Animal Beta-Galactoside-Binding Lectins. Cell 1994, 76, 597-598.
106. Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y. N.; Poirier, F., Introduction to galectins. Glycoconjugate J. 2002, 19, 433-440.
107. Hsu, D. K.; Liu, F. T., Regulation of cellular homeostasis by galectins. Glycoconjugate J. 2002, 19, 507-515.
108. Calame, K. L.; Lin, K. I.; Tunyaplin, C., Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 2003, 21, 205-230.
109. Tsai, C.-M.; Chiu, Y.-K.; Hsu, T.-L.; Lin, I.-Y.; Hsieh, S.-L.; Lin, K.-I., Galectin-1 Promotes Immunoglobulin Production during Plasma Cell Differentiation. J. Immunol. 2008, 181, 4570-4579.
110. Tsai, C.-M.; Wu, H.-Y.; Su, T.-H.; Kuo, C.-W.; Huang, H.-W.; Chung, C.-H.; Chen, C.-S.; Khoo, K.-H.; Chen, Y.-J.; Lin, K.-I., Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling. J Proteomics 2014, 103, 241-253.
111. Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I., Target-specific chemical acylation of lectins by ligand-tethered DMAP catalysts. J. Am. Chem. Soc. 2008, 130, 245-251.
112. Bhattacharya, S.; Snehalatha, K., Dialkylaminopyridine catalysed esterolysis of p-nitrophenyl alkanoates in different cationic microemulsions. J. Chem. Soc., Perkin Trans. 2 1996, 2021-2025.
113. Fromageo.Hp; Reese, C. B.; Sulston, J. E., Synthesis of Oligoribonucleotides .6. 2'-O-Acyl Ribonucleoside Derivatives as Intermediates in Synthesis of Dinucleoside Phosphates. Tetrahedron 1968, 24, 3533-3540.
114. Segawa, Y.; Higashihara, T.; Ueda, M., Hyperbranched Polymers with Controlled Degree of Branching from 0 to 100%. J. Am. Chem. Soc. 2010, 132, 11000-11001.
115. Valles-Miret, M.; Bradley, M., A generic small-molecule microarray immobilization strategy. Tetrahedron Lett. 2011, 52, 6819-6822.
116. Hatanaka, Y.; Hashimoto, M.; Nakayama, H.; Kanaoka, Y., Syntheses of Nitrosubstituted Aryl Diazirines - an Entry to Chromogenic Carbene Precursors for Photoaffinity-Labeling. Chem. Pharm. Bull. 1994, 42, 826-831.
117. Gigante, F.; Kaiser, M.; Brun, R.; Gilbert, I. H., SAR studies on azasterols as potential anti-trypanosomal and anti-leishmanial agents. Bioorg. Med. Chem. 2009, 17, 5950-5961.
118. Larionov, O. V.; de Meijere, A., Enantioselective total syntheses of belactosin A, belactosin C, and its homoanalogue. Org. Lett. 2004, 6, 2153-2156.
119. Itakura, Y.; Nakamura-Tsuruta, S.; Kominami, J.; Sharon, N.; Kasai, K.; Hirabayashi, J., Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. 2007, 142, 459-469.
120. Matsuura, K.; Hayashi, K.; Kobayashi, K., On-off switching of gene expression regulated with carbohydrate-lectin interaction. Biomacromolecules 2005, 6, 2533-2540.
121. Solis, D.; Fernandez, P.; Diazmaurino, T.; Jimenezbarbero, J.; Martinlomas, M., Hydrogen-Bonding Pattern of Methyl Beta-Lactoside Binding to the Ricinus-Communis Lectins. Eur. J. Biochem. 1993, 214, 677-683.
122. Mandal, D. K.; Kishore, N.; Brewer, C. F., Thermodynamics of Lectin-Carbohydrate Interactions - Titration Microcalorimetry Measurements of the Binding of N-Linked Carbohydrates and Ovalbumin to Concanavalin-A. Biochemistry 1994, 33, 1149-1156.
123. Imai, Y.; Hirono, S.; Matsuba, H.; Suzuki, T.; Kobayashi, Y.; Kawagishi, H.; Takahashi, D.; Toshima, K., Degradation of Target Oligosaccharides by Anthraquinone-Lectin Hybrids with Light Switching. Chem-Asian J 2012, 7, 97-104.
124. Kunishima, M.; Yoshimura, K.; Morigaki, H.; Kawamata, R.; Terao, K.; Tani, S., Cyclodextrin-based artificial acyltransferase: Substrate-specific catalytic amidation of carboxylic acids in aqueous solvent. J. Am. Chem. Soc. 2001, 123, 10760-10761.
125. Jain, R. P.; Williams, R. M., Asymmetric synthesis of (S)-(+)-carnitine and analogs. Tetrahedron 2001, 57, 6505-6509.
126. Howell, L. A.; Gulam, R.; Mueller, A.; O'Connell, M. A.; Searcey, M., Design and synthesis of threading intercalators to target DNA. Bioorg. Med. Chem. Lett. 2010, 20, 6956-6959.
127. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B., A Greatly Improved Procedure for Ruthenium Tetraoxide Catalyzed Oxidations of Organic-Compounds. J. Org. Chem. 1981, 46, 3936-3938.
128. Gavande, N.; Kim, H.-L.; Doddareddy, M. R.; Johnston, G. A. R.; Chebib, M.; Hanrahan, J. R., Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of ρ1 GABAC Receptors. ACS Med. Chem. Lett. 2013, 4, 402-407.
129. 簡薇庭, 階段性合成醣核苷與其應用於合成聚N-乙醯乳醣胺. 國立清華大學化學研究所 博士論文 民國101年.
130. Valverde, I. E.; Lecaille, F.; Lalmanach, G.; Aucagne, V.; Delmas, A. F., Synthesis of a Biologically Active Triazole-Containing Analogue of Cystatin A Through Successive Peptidomimetic Alkyne–Azide Ligations. Angew. Chem. Int. Ed. 2012, 51, 718-722.
131. Rybak, J.-N.; Scheurer, S. B.; Neri, D.; Elia, G., Purification of biotinylated proteins on streptavidin resin: A protocol for quantitative elution. Proteomics. 2004, 4, 2296-2299.
132. Yamashita, K.; Tachibana, Y.; Kobata, A., The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 1978, 253, 3862-3869.
133. Lotan, R.; Beattie, G.; Hubbell, W.; Nicolson, G. L., Activities of Lectins and Their Immobilized Derivatives in Detergent Solutions - Implications on Use of Lectin Affinity Chromatography for Purification of Membrane Glycoproteins. Biochemistry 1977, 16, 1787-1794.
134. Tateno, H.; Mori, A.; Uchiyama, N.; Yabe, R.; Iwaki, J.; Shikanai, T.; Angata, T.; Narimatsu, H.; Hirabayashi, J., Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology 2008, 18, 789-798.
135. Baenziger, J. U.; Fiete, D., Structure of the Complex Oligosaccharides of Fetuin. J. Biol. Chem. 1979, 254, 789-795.
136. Dunston, C. R.; Choudhury, K.; Griffiths, H. R., Terminal galactose residues on transferrin are increased in midlife adults compared to young adults. Proteomics 2012, 12, 3147-3153.
137. Seibel, J.; Hellmuth, H.; Hofer, B.; Kicinska, A. M.; Schmalbruch, B., Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Chembiochem 2006, 7, 310-320.
138. 張宗哲, 合成具有多價性醣體之新穎光親和性探針並用於探討碳水化合物與凝集素間之交互作用. 國立清華大學化學研究所 博士論文 民國101年.
139. Li, Y.; Zuilhof, H., Photochemical Grafting and Patterning of Organic Monolayers on Indium Tin Oxide Substrates. Langmuir 2012, 28, 5350-5359.
140. van Roon, A. M. M.; Aguilera, B.; Cuenca, F.; van Remoortere, A.; van der Marel, G. A.; Deelder, A. M.; Overkleeft, H. S.; Hokke, C. H., Synthesis and antibody-binding studies of a series of parasite fuco-oligosaccharides. Bioorg. Med. Chem. 2005, 13, 3553-3564.
141. Chadwick, J.; Jones, M.; Mercer, A. E.; Stocks, P. A.; Ward, S. A.; Park, B. K.; O'Neill, P. M., Design, synthesis and antimalarial/anticancer evaluation of spermidine linked artemisinin conjugates designed to exploit polyamine transporters in Plasmodium falciparum and HL-60 cancer cell lines. Bioorg. Med. Chem. 2010, 18, 2586-2597.
142. 林建宏, Zanamivir 衍生物作為流感病毒抑制劑之開發及氟標記結合化學酶合成寡醣的研究與探討. 國立清華大學化學研究所 博士論文 民國102年.
143. Huhtiniemi, T.; Suuronen, T.; Lahtela-Kakkonen, M.; Bruijn, T.; Jaaskelainen, S.; Poso, A.; Salminen, A.; Leppanen, J.; Jarho, E., N-epsilon-Modified lysine containing inhibitors for SIRT1 and SIRT2. Bioorg. Med. Chem. 2010, 18, 5616-5625.
144. Okano, K.; Mitsuhashi, N.; Tokuyama, H., Total synthesis of PDE-I and -II by copper-mediated double aryl amination. Tetrahedron 2013, 69, 10946-10954.
145. Cordero, F. M.; Bonanno, P.; Chioccioli, M.; Gratteri, P.; Robina, I.; Vargas, A. J. M.; Brandi, A., Diversity-oriented syntheses of 7-substituted lentiginosines. Tetrahedron 2011, 67, 9555-9564.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *