帳號:guest(18.191.234.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王祥儒
論文名稱(中文):一、 鈀氧化亞銅及金奈米棒氧化亞銅核殼結構與其晶面相關 之光學探討 二、 金氧化亞銅核殼結構之可調性近紅外光表面電漿吸收產 生之有效光熱作用
論文名稱(外文):I. Facet-Dependent Optical Properties of Pd-Cu2O and Au rod-Cu2O Core-Shell Nanocrystals II. Photothermal Effects Generated from Au-Cu2O Core-Shell Nanocrystals with Tunable NIR SPR Absorption Band
指導教授(中文):黃暄益
口試委員(中文):朱立岡
郭俊宏
黃暄益
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023507
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:100
中文關鍵詞:氧化亞銅表面電漿共振光熱
外文關鍵詞:PdAuCu2Osurface plasmon resonancephotothermal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
先前我們透過以八面體的金核合成奈米立方體、截半立方體及八面體的金氧化亞銅核殼結構,已證實氧化亞銅晶體其與晶面有關之光學性質。金的表面電漿共振吸收峰因為氧化亞銅的高折射率而大幅紅位移且保持在固定的位置而無關乎殼的厚度改變。然而,改變殼的表面晶面,金的表面電漿共振吸收峰在立方體及八面體的金氧化亞銅核殼結構相差達到26奈米,且氧化亞銅的殼本身也出現與晶面有關之光學性質。在第一個環節中,我們同樣觀察到光學性質的晶面相關性也出現在鈀氧化亞銅及金奈米棒氧化亞銅核殼結構中。但是,在正方體中,鈀的表面電漿共振吸收峰卻比八面體更為藍位移,與在金氧化亞銅結構中相反。金奈米短棒的長軸電漿共振吸收峰也因氧化亞銅而紅位移至第二生物窗口。第二個部分中,小尺寸的金氧化亞銅核殼結構第一次被應用在光熱效應中,以近紅外光雷射加熱經過300秒後溫度可從室溫提升至 65 ºC,此現象可應用於將太陽能轉換為熱能。藉由包上氧化亞銅可增加吸收截面積且調控金的表面電漿吸收,此外,金奈米粒子穩定性也可得到提升,而非於照射後會發生變形。這些結構有潛力可發展為極小且高效能的電漿加熱器。
Previously we showed that the optical properties of Cu2O crystals are facet-dependent by examining Au‒Cu2O core‒shell nanocubes, cuboctahedra, and octahedra with octahedral gold cores. The substantially red-shifted Au surface plasmon resonance (SPR) absorption band due to the Cu2O shell with a large refractive index remains fixed despite changes in the shell thickness. However, tuning the shell shape, and hence the surface facet, the Au SPR band can differ by as much as 26 nm. The Cu2O shells also display facet-dependent optical properties. Here in the first study, we examined if the same facet-dependent optical properties are observable in Pd‒Cu2O and Au nanorod‒Cu2O core‒shell nanocrystals. Nicely, the same facet-dependent optical properties are observed in these nanostructures. However, the Pd SPR band in Pd‒Cu2O cubes is more blue-shifted than Pd‒Cu2O truncated octahedra, whereas in the Au‒Cu2O case the Au SPR band of cubes is more red-shifted than octahedra. The short Au nanorod cores shift the SPR band directly to 1010‒1235 nm into the second biological window with the Cu2O shells. The small Au‒Cu2O core‒shell nanocrystals were tested for photothermal effect for the first time. Remarkably, giving enough near-IR irradiation energy, the ethanol solvent containing Au‒Cu2O nanoparticles can raise the temperature to 65 ºC after 300 sec from room temperature. This property can be exploited for converting sun light to thermal energy. Au nanoparticles can deform after long illumination time. By coating Cu2O shells outside Au cores, the stability and absorption cross section will increase and the LSPR property is tunable by changing the shell morphology and using short rods. These structures have potential as ultrasmall and highly efficient plasmonic heaters.
摘要 i 
Abstract ii 
Table of Contents iv 
List of Figures vii 
List of Tables xii 
List of Schemes xiii 
CHAPTER 1 Overview of the Thesis and the Background Knowledge 1 
1.1  Overview of the Thesis 1 
1.2  Background Knowledge 4 
1.2.1  Fundamental Optics 4 
1.2.2  Plasmonics 9 
1.2.3  Photothermal Effects on Nanoscale 16 
1.2.4  Cuprous Oxide 20 
1.3  Paper Review 25 
1.3.1  Optical and Plasmonic Properties of Nanoparticles 25 
1.3.2  Photothermal Properties of Nanoparticles 30 
1.4  Conclusion 36 
1.5  References 37 
CHAPTER 2 Facet-Dependent Optical Properties of Pd−Cu2O and Au rod−Cu2O Core−Shell
Nanocrystals 40 
2.1  Introduction 40
2.2  Experimental Section 42 
2.2.1  Chemicals 42 
2.2.2  Synthesis of Au Nanorods 42 
2.2.3  Synthesis of Au Nanorod‒Cu2O Core‒Shell Nanocrystals 43 
2.2.4  Synthesis of Pd Nanocubes 44 
2.2.5  Synthesis of Pd‒Cu2O Core‒Shell Nanocrystals 45 
2.2.6  Instrumentation 46 
2.3  Results and Discussion 47 
2.3.1  Pd−Cu2O Nanocrystals 47 
2.3.2  Au Nanorod−Cu2O Nanocrystals 55 
2.4  Conclusion 67 
2.5  References 68 
2.2  Experimental Section 42 
2.2.1  Chemicals 42 
2.2.2  Synthesis of Au Nanorods 42 
2.2.3  Synthesis of Au Nanorod‒Cu2O Core‒Shell Nanocrystals 43 
2.2.4  Synthesis of Pd Nanocubes 44 
2.2.5  Synthesis of Pd‒Cu2O Core‒Shell Nanocrystals 45 
2.2.6  Instrumentation 46 
2.3  Results and Discussion 47 
2.3.1  Pd−Cu2O Nanocrystals 47 
2.3.2  Au Nanorod−Cu2O Nanocrystals 55 
2.4  Conclusion 67 
2.5  References 68 
CHAPTER 3 Photothermal Effects Generated from Au−Cu2O Core−Shell Nanocrystals with
Tunable NIR SPR Absorption Band 69 
3.1  Introduction 69 
3.2  Experimental Section 71 
3.2.1  Chemicals 71 
3.2.2  Synthesis of Au Octahedra 71 
3.2.3  Synthesis of Au−Cu2O Core−Shell Heterostuctures 72 
3.2.4  Synthesis of Au Nanorod−Cu2O Core−Shell Heterostuctures 74 
3.2.5  Photothermal Measurement 75 
3.2.6  Instrumentation 75 
3.3  Results and Discussion 77 
3.4  Conclusion 97 
3.5  References 98 
Appendix 99
CHAPTER 1
( 1 ) Fox, M. Optical Properties of Solids; Oxford University Press: New York, 2001.
( 2 ) Pillai, S.; Catchpole, K. R.; Trupke, T.; Green, M. A. J. Appl. Phys. 2007, 101, 093105.
( 3 ) Sqalli, O.; Utke, I.; Hoffmann, P.; Marquis-Weible, F. J. Appl. Phys. 2002, 92, 1078.
( 4 ) Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2003, 107, 7426.
( 5 ) Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.
( 6 ) Homola, J. Chem. Rev. 2008, 108, 462.
( 7 ) Otto, A. Phys. 1968, 216, 398.
( 8 ) Kretschmann, E.; Raether, H. Z. Naturf. A 1968, 23, 2135.
( 9 ) Devaux, E.; Ebbesen, T. W.; Weeber, J.-C.; Dereux, A. Appl. Phys. Lett. 2003, 83, 4936.
( 10 ) Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824.
( 11 ) Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267.
( 12 ) Hao, E.; Schatz, G. C. J. Chem. Phys. 2004, 120, 357.
( 13 ) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
( 14 ) Kuwata, H.; Tamaru, H.; Esumi, K.; Miyano, K. Appl. Phys. Lett. 2003, 83, 4625.
( 15 ) Mie, G. Ann. Phys. 1908, 23, 377.
( 16 ) Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Academic: New York, 1969.
( 17 ) Bohren, C. F.; Huffillan, D. R. Absorption and Scattering of Light by Small Particles; Wiley Interscience: New York, 1983.
( 18 ) Draine, B. T.; Flatau, P. J. J. Opt. Soc. Am. A 1994, 11, 1491.
( 19 ) Moreno, E.; Erni, D.; Hafner, C.; Vahldieck, R. J. Opt. Soc. Am. A 2002, 19, 101.
( 20 ) Zienkiewicz, O. C.; Taylor, R. L. The Finite Element Method, 5th ed.; Butterworth-Heinemann:  Boston, MA, 2000, Vol. 1.
( 21 ) Kunz, K. S.; Luebbers, R. J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: Boca Raton, FL, 1993; p 8657.
( 22 ) Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109.
( 23 ) Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P. Nature 2004, 430, 190.
( 24 ) Oh, M.; Mirkin, C. A. Nature 2005, 438, 651.
( 25 ) Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
( 26 ) Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West J. L.; Nano Lett. 2007, 7, 1929.
( 27 ) Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5, 709.
( 28 ) Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. Nanoscale Res. Lett. 2006, 1, 84.
( 29 ) Lee, K. S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 19220.
( 30 ) Govorov, A. O.; Richardson, H. H.; Nanotoday 2007, 2, 30.
( 31 ) Grondahl, L. O. Science 1926, 64, 306.
( 32 ) Lange, B. Photoelements and Their Application, Reinhold, New York, 1939.
( 33 ) Olsen, L. C. Sol. Cells 1982, 7, 247.
( 34 ) Rakhshani, A. E. Solid-State. Electronics 1986, 29, 7.
( 35 ) Pollack, G. P.; Trivich, D. J. Appl. Phys. 1975, 46, 163.
( 36 ) Abdu, Y.; Musa, A. O. Bayero Journal of Pure and Applied Sciences 2009, 2, 8.
( 37 ) Pastrnak, I. S. Energy Mat. 1980, 2, 277.
( 38 ) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998, 357.
( 39 ) Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J. N.; Domen, K.; Hosono, H.; Kawazoe, H.; Tanaka, A. Chem. Commun. 1998, 2185.
( 40 ) De Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J. Chem. Commun. 1999, 1069.
( 41 ) Rai, B. P. Sol. Cells 1988, 25, 265.
( 42 ) Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638.
( 43 ) Bao, H.; Zhang, W.; Shang, D.; Hua, Q.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. J Phys. Chem. C 2010, 114, 6676.
( 44 ) Hua, Q.; Shang, D.; Zhang, W.; Chen, K.; Chang, S.; Ma, Y.; Jiang, Z.; Yang, J.; Huang, W. Langmuir 2011, 27, 665
( 45 ) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
( 46 ) Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. J. Am. Chem. Soc. 2010, 132, 6131.
( 47 ) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261.
( 48 ) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 13, 12815.
( 49 ) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
( 50 ) Hacialioglu, S.; Meng, F.; Jin, S. Chem. Commun. 2012, 48, 1174.
( 51 ) Sui, Y. M.; Fu, W. Y.; Zeng, Y.; Yang, H. B.; Zhang, Y. Y.; Chen, H.; Li, Y. X.; Li, M. H.; Zou, G. T. Angew. Chem. Int. Ed. 2010, 49, 4282.
( 52 ) Xu, H.; Wang, W. Angew. Chem. Int. Ed. 2007, 46, 1489.
( 53 ) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
( 54 ) Yec, C. C.; Zeng, H. C. Chem. Mater. 2012, 24, 1917.
( 55 ) Li, J.; Cushing, S. K.; Bright, J.; Meng, F.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. ACS Catal. 2013, 3, 47.
( 56 ) Bardhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS Nano 2010, 4, 6169.
( 57 ) Liu, D.-Y.; Ding, S.-Y.; Lin, H.-X.; Liu, B.-J.; Ye, Z.-Z.; Fan, F.-R.; Ren,B.; Tian, Z.-Q. J. Phys. Chem. C 2012, 116, 4477.
( 58 ) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316.
( 59 ) Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. ACS Nano 2013, 7, 42.
( 60 ) Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Small 2010, 6, 2272.
( 61 ) Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Adv. Mater. 2011, 23, 3420.

CHAPTER 2
( 1 ) Hirakawa, T.; Kamat, P. V.; J. Am. Chem. Soc. 2005, 127, 3928.
( 2 ) Ren, X.; Meng, X.; Tang, F. Sensors and Actuators B: Chemical 2005, 110, 358.
( 3 ) Wang, J.; Song, D.; Wang, L.; Zhang, H.; Zhang, H.; Sun, Y. Sensors and Actuators B: Chemical 2011, 157, 547.
( 4 ) Yang, Y.; Shi, J.; Kawamura, G.; Nogami, M. Scripta Materialia 2008, 58, 862.
( 5 ) Wu, H.-L.; Tsai, H.-R. Hung, Y.-T.; Lao, K.-U.; Liao, C.-W.; Chung, P.-J.; Huang, J.-S.; Chen, I-C.; Huang, M. H. Inorg. Chem. 2011, 50, 8106.
( 6 ) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
( 7 ) Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2005, 109, 22192.
( 8 ) Kuo, C.-H.; Hua, T.-E.; Huang, M. H. J. Am. Chem. Soc. 2009, 131, 17871.
( 9 ) Shen, Y.-T. M. S. Dissertation, National Tsing Hua University, 2011.
( 10 ) Liu, S.-Y. M. S. Dissertation, National Tsing Hua University, 2014.
( 11 ) Ribbing, C. G.; Roos, A. In Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: San Diego, 1991; Vol. 2, pp 875.
( 12 ) Paudel, H. P.; Leuenberger, M, N.; Nano Lett. 2012, 12, 2690.
( 13 ) Schwendt, D.; Osten, H. J.; Shekhter, P.; Eizenberg, M. Appl. Phys. Lett. 2012, 100, 232905.
( 14 ) Busani, T.; Devine, R. A. B. J. Appl. Phys. 2005, 98, 044102.
( 15 ) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
( 16 ) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20, 6414.
( 17 ) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
( 18 ) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316.
( 19 ) Bardhan, R.; Grady, N. K.; Ali, T.; Halas, N. J. ACS Nano 2010, 4, 6169.
( 20 ) Zhang, L.; Wang, H. ACS Nano 2011, 5, 3257.
( 21 ) Lee, K.-S., El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 19220.
( 22 ) Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S. Langmuir 1998, 14, 5636.
( 23 ) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
( 24 ) Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. J. Phys. Chem. C 2010, 114, 5073.
( 25 ) Chen, C.; Ma, W.; Zhao, J. Chem. Soc. Rev. 2010, 39, 4206.

CHAPTER 3
( 1 ) Jain, P. K.; Huang, X.; EI-Sayed, I. H.; EI-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578.
( 2 ) Govorov, A. O.; Richardson, H. H.; Nanotoday 2007, 2, 30.
( 3 ) Huang, X.; Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Laser Med. Sci. 2008, 23, 217.
( 4 ) EI-Sayed, I. H.; Huang, X.; EI-Sayed, M. A. Cancer Lett. 2006, 239, 129.
( 5 ) Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5, 709.
( 6 ) Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; and Halas N. J. ACS Nano 2013, 7, 42.
( 7 ) Tabor, C.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. C 2007, 111, 8934.
( 8 ) Huang, W.; Qian, W.; El-Sayed, M. A. J. Appl. Phys. 2005, 98, 114301.
( 9 ) Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; EI-Sayed, M. A. J. Phys. Chem. A 1999, 103, 1165.
( 10 ) Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Adv. Mater. 2011, 23, 3420.
( 11 ) Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Small 2010, 6, 2272.
( 12 ) Chang, C.-C.; Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570.
( 13 ) Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H. Nanoscale 2014, 6, 4316.
( 14 ) Girard, C.; Baffou, G.; Quidant, R. Appl. Phys. Let. 2009, 94, 153109.
( 15 ) Yang, Y.; Zhang, Z. G.; Grulke, E. A.; Anderson, W. B.; Wu, G. Int. J. Heat Mass Transfer 2005, 48, 1107.
( 16 ) Aksamija, Z.; Knezevic, I. Phys. Rev. B 2010, 82, 045319.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以金奈米立方體製備二十四面體和凹面八面體之鈀包金核殼奈米結構與其高效率的電化學活性
2. 銀.金及鑭對Pd/A1203觸煤特性的影響
3. 具形狀序列演變與大小控制的金-鈀核殼奈米晶體之合成、光學調控、氫氣感測及自組裝成超級晶體結構
4. 具多分支結構和高指數晶面之金鈀奈米合金的合成及其一般催化和光催化特性
5. 利用有時間及位置解析能力的小角度X光散射法進行超晶格形成過程的量測並在水溶液中製備銅立方體及超小氧化亞銅奈米立方體和八面體以進行催化反應和光學量測
6. 金–氧化亞銅核殼奈米晶體的製備及其形狀相關之光學、電學性質和光催化活性之研究
7. 氧化亞銅奈米晶體其具晶面效應的導電性質及金-氧化亞銅、金@銀-氧化亞銅核殼奈米晶體其具晶面效應的光學性質
8. 嵌入中孔洞氧化矽之金屬奈米結構:合成與鑑定
9. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
10. 氧化鋅與氧化鎘奈米線的合成
11. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
12. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
13. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
14. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
15. 水溶液加熱還原法合成二維金奈米晶體
 
* *