帳號:guest(3.15.188.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施宜君
論文名稱(中文):芳炔誘導之1,2-加成/[3 + 2]環化加成串聯反應與吡咯啶之合成
論文名稱(外文):Aryne-Induced Novel Tandem 1,2-Addition/ [3 + 2] Cycloaddition to Generate Pyrrolidines
指導教授(中文):胡紀如
口試委員(中文):蔡淑貞
許銘華
蔡福源
胡紀如
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:101023501
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:芳炔吡咯啶串聯反應[3 + 2]環化加成
外文關鍵詞:ArynePyrrolidineTandem Reaction[3 + 2] Cycloaddition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本實驗室已發展出一套新合成方法,並成功合成出具有屈公熱病毒活性的的「咪唑烷」(imidzolidine)。利用「1,3-偶極環化加成」(1,3-cycloaddition)反應的策略,「希夫鹼」(Schiff base)會和芳炔生成「甲亞胺偶極體」(azomethine ylide)。反應中產生的偶極體會和第二當量的同一個「希夫鹼」(Schiff base)經由[3 + 2]環化加成而得到所需的「咪唑烷」(imidzolidine),產率為7085%。
「吡咯烷」(pyrrolidine)具有非常多的生物活性,包括抗癌、抗病毒、抗糖尿病的活性。為了延續之前不須使用金屬做催化的反應,我們將烯烴化合物引進為起始物來取代第二當量的「希夫鹼」(Schiff base)。在溫和的反應條件下當「偶極體」(dipole)形成後馬上與烯烴化合物進行「1,3-環化加成」反應,得到產率不錯的「吡咯烷」(pyrrolidine)。利用此新穎「1,2-加成/[3 + 2]環化加成串聯反應」(tandem 1,2-addition/[3 + 2] cycloaddition)可以更容易且更有效率地合成高產率與高立體專一性的「吡咯烷」(pyrrolidine)。由於不需要純化中間產物,所以這是一個非常高效率的新方法。
此反應很明顯不只可應用在A + 2 B 的系統,A + B + C的系統也適用。不同的「偶極體」(dipole)及「親偶極體」(dipolarophile)也可以適用於此新穎的方法。因此更多複雜的「五元雜環化合物」(five-membered heterocycles)及具有生物活性的化合物都可以藉由此方法而有效率得到。這是第一個利用「芳炔」(aryne)誘導環化來合成「五元雜環」(five-membered heterocycles)的報導。
Our research group has developed a new method for the synthesis of imidazolidine which possesses Chikungunya activity. By use of the 1,3-dipolar cycloaddition strategy, a Schiff base with an aryne gave an azomethine ylide in situ. This ylide reacted with a second equivalent of the same Schiff base through a [3 + 2] fashion to produce the desired imidazolidines in 70–85%.
Pyrrolidines impart a variety of biological activities, including anticancer activity, antiviral activity, and antidiabetic activity. To continue previous study of transition metal free aryne induced [3 + 2] cycloaddition, we applied alkenes as starting materials instead of the addition of the second equvilent of Schiff base. After the ylide formed, it subsequently underwent 1,3-dipolar cycloaddition with alkenes to give pyrrolidines in situ under mild conditions in good yields. The newly tandem 1,2-addition/[3 + 2] cycloaddition led to stereospecific pyrroidinesin high yields. This new method was efficient without identification of intermediates.
Our results indicate that not only A + 2B system worked out in this one-flaksystem, but also A + B + C system was also feasible. That is, different kinds of dipolarophiles and dipoles can be applied with our method. Therefore more complicated five-membered heterocycles and bioactive compounds could be obtained with high efficiency and high yields. This is the first aryne-induced cyclization reported in the synthesis of five-membered heterocycles.
Abstract i
Chinese Abstract iii
Acknowledgement v
Content vi
List of Figure xiii
List of Table xiv
List of Scheme xv
I. Introduction 1
1-1 Chikungunya Virus 1
1-2 Bioactivities of Imidazolidines 2
1-3 Modified Strategy for Pyrrolidine Synthesis 4
1-4 Bioactivities of Pyrrolidines 6
1-5 Methods for Synthesis of Pyrroidines 8
1-6 Tandem reaction 13
1-7 Benzynes 15
1-8 Azomethine Ylides 17
1-9 1,3-Dipolar Cycloaddition Reactions 19
II. Results 24
2-1 Synthetic Scheme of Pyrrolidines 24
2-2 Pyrrolidine as Final Products 25
2-3 Optimization of Reactions 27
2-4 X-ray Identification 30
2-5 Azomethine Ylide Formation 32
III. Discussion 33
3-1 Mechanistic Study and Structural identification of Pyrrolidines 33
3-2 Reaction Optimization 38
3-3 Discussion on Yield 40
3-4 Sequential tandem reaction 41
3-5 Competitive Reaction 42
3-6 Cycloreversion 43
3-7 Advantages 44
3-8 Lipinski’s Rule of Five 44
3-9 Future Application 45
IV. Conclusions 49
V. General Experimental 50
Standard Procedure 1 for the Synthesis of Arylpyrrolidines 92a–g. 52
Standard Procedure 2 for the Synthesis of Arylpyrrolidines 92a–g. 52
(2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5-diphenylpyrrolidine (92a). 53
(2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5-(4-methoxyphenyl)-1-phenylpyrrolidine (92b). 54
(2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2-methoxycarbonyl-1-phenylpyrrolidine (92c). 56
(2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl-5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 57
(2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e). 59
(2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5-(4-methylphenyl)-1-phenylpyrrolidine (92f). 60
(2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5-(4-methoxyphenyl)-1-phenylpyrrolidine (92g). 62
VI. References 64
VII. Spectra 78
1H NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5- diphenylpyrrolidine (92a) 79
13C NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5- diphenylpyrrolidine (92a) 79
Mass spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5- diphenylpyrrolidine (92a) 80
HPLC spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5- diphenylpyrrolidine (92a) 80
IR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-1,5- diphenylpyrrolidine (92a) 81
1H NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92b) 81
13C NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92b) 82
Mass spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92b) 82
HPLC spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92b) 83
IR spectrum of (2RS,4SR,5SR)-4-Acetyl-2-methoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92b) 83
1H NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2- methoxycarbonyl-1-phenylpyrrolidine (92c) 84
13C NMR spectrum of (2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2- methoxycarbonyl-1-phenylpyrrolidine (92c) 84
Mass spectrum of (2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2- methoxycarbonyl-1-phenylpyrrolidine (92c) 85
HPLC spectrum of (2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2- methoxycarbonyl-1-phenylpyrrolidine (92c) 85
IR spectrum of (2RS,4SR,5SR)-4-Acetyl-5-(4-fluorophenyl)-2- methoxycarbonyl-1-phenylpyrrolidine (92c) 86
1H NMR spectrum of (2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl- 5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 86
13C NMR spectrum of (2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl- 5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 87
Mass spectrum of (2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl- 5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 87
HPLC spectrum of (2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl- 5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 88
IR spectrum of (2RS,4SR,5SR)-4-tert-Butoxycarbonyl-2-methoxycarbonyl- 5-(4-methoxyphenyl)-phenylpyrrolidine (92d) 88
1H NMR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl- 5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e) 89
13C NMR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl- 5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e) 89
Mass spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl- 5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e) 90
HPLC spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl- 5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e) 90
IR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl- 5-(4-methoxyphenyl)-1-phenylpyrrolidine (92e) 91
1H NMR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5- (4-methylphenyl)-1-phenylpyrrolidine (92f) 91
13C NMR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5- (4-methylphenyl)-1-phenylpyrrolidine (92f) 92
Mass spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5- (4-methylphenyl)-1-phenylpyrrolidine (92f) 92
HPLC spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5- (4-methylphenyl)-1-phenylpyrrolidine (92f) 93
IR spectrum of (2RS,4SR,5SR)-4-cyano-2-methoxycarbonyl-5- (4-methylphenyl)-1-phenylpyrrolidine (92f) 93
1H NMR spectrum of (2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92g) 94
13C NMR spectrum of (2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92g) 94
Mass spectrum of (2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92g) 95
HPLC spectrum of (2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92g) 95
IR spectrum of (2RS,3RS,4SR,5SR)-2,3,4-Trimethoxycarbonyl-5- (4-methoxyphenyl)-1-phenylpyrrolidine (92g) 96
(1) For our previous use of 1,3-dipolar cycloadditions as the key step in organic synthesis, see: (a) Hwu, J. R.; Robl, J. A.; Gilbert, B. A. Novel and versatile strategy for the synthesis of prostanoids in the e, f, h, and i Series. J. Am. Chem. Soc. 1992, 114, 3125–3126. (b) Hwu, J. R.; Robl, J. A. A new approach to prostanoid synthesis: a model study. J. Chem. Soc., Chem. Commun. 1986, 704–706.
(2) For a review and a book, see: (a) Viso, A.; Pradilla, R. F.; Tortosa, M.; García, A.; Flores, A. Update 1 of: α,β-diamino acids: Biological significance and synthetic approaches. Chem. Rev. 2011, 111, PR1–42. (b) Kanemasa, S. In Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, 2002; pp 766−767.
(3) Kowalzik, S.; Xuan, N.V.; Weissbrich, B.; Scheiner, B.; Schied, T.; Drosten, C.; Müller, A.; Stich, A.; Rethwilm, A.; Bodem, J. Characterisation of a chikungunya virus from a German patient returning from Mauritius and development of a serological test. Med. Microbiol. Immunol. 2008, 197, 381-386.
(4) Odolini, S.; Parola, P.; Gkrania-Klotsas, E.; Caumes, E.; Schlagenhauf, P.; Lo´pez-Ve´lez, R.; Burchard, G. D.; Santos-O’Connor, F.; Weld, L.; von Sonnenburg, F.; Field, V.; de Vries, P.; Jensenius, M.; Loutan, L.; Castell, F. Travel-related imported infections in Europe, EuroTravNet. Clin. Microbiol. Infect. 2012, 18, 468–474.
(5) Manimunda, S. P.; Vijayachari, P.; Uppoor, R.; Sugunan, A. P.; Singh, S. S.; Rai, S. K.; Sudeep, A. B.; Muruganandam, N.; Chaitanya, I. K.; Guruprasad, D. R. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 392–399.
(6) Caterina, M. C.; Perillo, I. A.; Boiani, L.; Pezaroglo, H.; Cerecetto, H.; Gonzalez, M.; Salerno, A. Imidazolidines as new anti-Trypanosoma cruzi agents: Biolodical evaluation and structure–activity relationships. Bioorg. Med. Chem. 2008, 16, 2226–2234.
(7) Moussa, I. A.; Banister, S. D.; Manoli, M.; Doddareddy, M. R.; Cui, J.; Mach, R. H.; Kassiou, M. Exoloration of ring size in a series of cyclic vicinal diamines with σ1 receptor affinity. Bioorg. Med. Chem. Lett. 2012, 22, 5493–5497.
(8) Sharma, V.; Khan, M. S. Y. Synthesis of novel tetrahydroimidazole derivatives and studies for their biological properties. Eur. J. Med. Chem. 2001, 36, 651–658.
(9) Mohammat, M. F.; Najim, N.; Mansor, N. S. Sarman, S.; Shaameri, Z.; Zain, M. M.; Hamzah, A. S. Arkivoc 2011, ix, 429–438.
(10) Dimond, S. J.; Brouwers, Y. M. In crease in the power of human memory in normal man through the use of drugs. Psychopharmacology 1976, 49, 307–309.
(11) Winnicka, K.; Tomasiak, M.; Bielawska, A. Piracetam–an old drug with novel properties. Acta Pol. Pharm. 2005, 62, 405–409.
(12) Shorvon, S. D. The treatment of epilepsy; Shorvon S. D., Perucca, E., Fish, D., Eds.; Blackwell Science: Oxford, 2004; pp 489–495.
(13) Samvelian, V. M.; Malakian, M. G.; Badzhinian, S. A. The antiarrhythmic action of piracetam. Farmakol Toksikol. 1990, 53, 22–23.
(14) Grollman, A. P. Inhibitors of Protein Biosynthesis. II. Mode of action of anisomysin. J. Biol. Chem. 1967, 742, 3226–3233.
(15) Bagchi, D.; Prasad, R.; Das, D. K. Direct scavenging of free radicals by captopril, an angiotensin converting enzyme inhibitor. Biochem. Biophys. Res. Commun. 1989, 158, 52 – 57.
(16) Andreoli, S. P. Captopril scavenges hydrogen peroxide and reduces, but does not eliminate, oxidant-induced cell injury. Am. J. Phyysio. 1993, 264, F120 – F127
(17) Bond, G. L.; Hu, W.; Levine, A. J. MDM2 is a central node in the p53 pathway: 12years and counting. Curr. Cancer Drug Targets, 2005, 5, 3–8.
(18) Freedman, D. A.; Wu, L.; Levine, A. J. Functions of the MDM2 oncoprotein. Cell. Mol. Life Sci. 1999, 55, 96–107.
(19) Momand, J.; Zambetti, G. P.; Olson, D. C. George, D.; Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992, 69, 1237–1245.
(20) Hainaut, P.; Hollstein, M. p53 and human cancer: the firsr ten thousand mutations. Adv. Cancer Res. 2000, 77, 81–137.
(21) Ray-Coquard, I.; Blay, J. Y.; Italiano, A.; Cesne, A. L.; Penel, N.; Zhi, J.; Hell, F.; Rueger, R.; Graves, B.; Ding, M.; Geho, D.; Middleton, S. A.; Vsaailey, L. T.; Nichols, G.; Bui, B. N. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism. Lancet Oncol. 2012, 13, 1133–1140.
(22) Carry, J. C.; Garcia-Echeverria, C. Inhibitors of the p53/hdm2 protein-protein interaction-path to the clinic. Bioorg. Med. Chem. Lett. 2013, 23, 2480–2485.
(23) Ding, Q.; Zhang, Z.; Liu, J. J.; Jiang, N.; Zhang, J.; Ross, T. M.; Chu, X. J.; Bartkovitz, D.; Podlaski, F.; Jason, C.; Tovar, C.; Filipovic, Z. M.; Higgins, B.; Glenn, K.; Packman, K.; Vassilev, L. T. Graves, B. Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J. Med. Chem. 2013, 56, 5979–5983.
(24) Zhang, Z.; Chu, X. J.; Liu, J. J.; Ding, Q.; Zhang, J.; Bartkovitz, D.; Jiang, N.; Karnachi, P.; So, S. S.; Tovar, C.; Filipovic, Z. M.; Higgins, B.; Glenn, K.; Packman, K.; Vassilev, L.; Graves, B. Discovery of potent and orally active p53-MDM2 inhibitors RO5353 and RO2468 for potential clinical development. ACS Med. Chem. Lett. 2014, 5, 124–127.
(25) Cheng, Y.; Huang, Z. T.; Wang, M. X. Heterocyclic enamines: the versatile intermediates in the synthesis of heterocyclic compounds and natural products. Curr. Org. Chem. 2004, 8, 325–351.
(26) Pearson, W. H. Alkaloid synthesis via [3+2] cycloadditions. Pure Appl. Chem. 2002, 74, 1339–1347.
(27) Kauffmann, T. 1,3-Anionic cycloadditions of organolithium compounds: an initial survey. new synthetic methods. Angew. Chem., Int. Ed. Engl. 1974, 13, 627–639.
(28) Li, G. Y.; Chen, J.; Yu, W. Y.; Hong, W.; Che, C. M. Stereoselective synthesis of functionalized pyrrolidines by ruthenium porphyrin-catalyzed decomposition of alpha-diazo esters and cascade azomethine ylide formation/1,3-dipolar cycloaddition reactions. Org. Lett. 2003, 5, 2153–2156.
(29) Galliford, C. V.; Beenen, M. A.; Nguyen, S. T.; Scheidt, A. Catalytic, three-component assembly reaction for the synthesis of pyrrolidines. Org Lett. 2003, 5, 3487–3490.
(30) Ney, J. E.; Wolfe, J. P. Palladium-catalyzed synthesis of N-aryl pyrrolidines from γ-(N-arylamino)alkenes: evidence for chemoselective alkene insertion into Pd–N bonds. Angew. Chem., Int. Ed. 2004, 43, 3605–3608.
(31) Yang, Q.; Ney, J. E.; Wofe, J. P. Palladium-Catalyzed tandem N-arylation/carboamination reactions for the stereoselective synthesis of N-aryl-2-benzyl pyrrolidines. Org. Lett. 2005, 7, 2575–2578.
(32) Meyer, N.; Werner, F.; Opatz, T. One-pot synthesis of polysubstitutedpyrrolidines from aminonitriles. Synthesis 2005, 6, 945–956.
(33) Carson, C. A.; Kerr, M. A. Catalyzed three-component reaction of aldehydes, amines, and 1,1-cyclopropanediesters. J. Org. Chem. 2005, 70, 8242–8244.
(34) Sezen, B.; Sames, D. Selective and catalytic arylation of N-phenylpyrrolidine: sp3 C-H bond functionalization in the absence of a directing group. J. Am. Chem. Soc. 2005, 127, 5284–5285.
(35) Duris, A.; Barber, D. V.; Sanganee, H. J.; Dixom, D. J. Diastereoselective synthesis of pyrrolidine derivatives via a one-pot nitro-Mannich/hydroamination cascade using base and gold catalysis. Chem. Commun. 2013, 49, 2777–2779.
(36) Tietze, L.; Beifuss, U. Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew. Chem,. Int. Ed. Engl. 1993, 105, 137–170.
(37) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron 2006, 62, 1619–1665.
(38) Bunce, R. A. Recent advances in the use of tandem reactions for organic synthesis. Tetrahedron. 1995, 51, 13103–13159.
(39) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Cascadereactions in total synthesis. Angew. Chem., Int. Ed. 2006, 118, 7292–7344.
(40) Tietze, L. F. In Selectivity—A Goal for Synthetic Efficiency; Trost, B. M., Bartmann, W., Eds.; Verlag Chemie: Weinheim, 1984.; pp299–136
(41) Behr, A.; Vorholt, A. J.; Ostrowski, K. A.; Seidensticker, T. Towards resource efficient chemistry: tandem reactions with renewable. Green Chem. 2014, 16, 982–1006.
(42) Denmark, S. E.; Thorarensen. A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev. 1996, 96, 137–166.
(43) Winkler, J. D.; Kim, H. S.; Kim, S. A highly efficient synthesis of taxanes via the tandem Diels-Alder reaction. Tetrahedron 1995, 36, 687–690.
(44) (a) Paquette, L. A.; Wyvratt, M. J.; Berk, H. C.; Moreck, R. E. This is an example of the "Domino Diels Alder Reaction". J. Am. Chem. Soc. 1978, 100, 5845–5855. (b) Cram, D. J.; Montgomery, C. S.; Knox, G. R. Macro rings. XXXIII. A 1,6 to 1,6 cycloaddition reaction, a Diels-Alder insertion reaction, and bent benzene rings. J. Am. Chem. Soc. 1966, 88, 515–525.
(45) Marchand, A. P.; Chou, T. C. Base-promoted rearrangement of 2,3,5,6-retrachloropentacyclo- [5.4.0.022,6.03,10.05,9] undecane-4,8,11–trione. J. Chem. Soc., Perkin Trans. 1. 1973, 1948–1951.
(46) Benvegnu, T.; Martelli, J.; Gree, R. Diels-alder reactions on linear polyenes, selectively protected as their tricarbonyl-iron complexes. Tetrahedron Lett. 1990, 31, 3145–3148.
(47) Danishefsky, S.; Schuda, P. F.; Kitahara, T.; Etheredge, S. J. The total synthesis of dl-vernolepin and dl-vernomenin. J. Am. Chem. Soc. 1977, 99, 6066–6075.
(48) Armit, J. W.; Robinson, R. Polynuclear heterocyclic aromatic types. Part II. Some anhydronium bases. J. Chem. Soc. 1925, 127, 1604–1618.
(49) Pena, D.; Perez, D.; Guitian, E. Insertion of arynes into σ bonds. Angew. Chem. Int. Ed. 2006, 45, 3579–3581.
(50) Dubrovskiy, A. V.; Markina, N. A.; Larock R. C. Use of benzynes for the synthesis of heterocycles. Org. Biomol. Chem. 2013, 11, 191–218.
(51) For recent reviews, see (a) Bhunia, A.; Yetra, S. R.; Biju, A. T. Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes. Chem. Soc. Rev. 2012, 41, 3140–3152. (b) Gampe, C. M.; Carreira, E. M. Arynes and cyclohexyne in natural product synthesis. Angew. Chem. Int. Ed. 2012, 51, 3766–3778.
(52) Ford, W. T. Cycloaddition of benzyne to substituted cyclopentadienes and cyclopentadienyl Grignard reagents. J. Org. Chem. 1971, 7, 3979–3987.
(53) Hayes, M. H.; Shinokubo, H.; Danheiser, R. L. Intramolecular [4 + 2] cycloadditions of benzynes with conjugated enynes, arenynes, and dienes. Org. Lett. 2010, 7, 3917–3920.
(54) Robert, J. D.; Jr. Simmons, H. E.; Carlsmith, L. A.; Vaughan, W. Rearrangement in the reaction of chlorobenzene-1-C14 with potassium amide. J. Am. Chem. Soc, 1953, 75, 3290–3291.
(55) Nishiyama, Y.; Kawabata, H.; Nishino, T.; Hashimoto, K.; Sonoda, N. Dehalogenation of o-dihalogen substituted arenes and α, α’-dihalogen substituted o-xylenes with lanthanum metal. Tetrahedron. 2003, 59, 6609–6614.
(56) Carey, F.; Sundberg, R. In Advanced organic chemistry: reactions and synthesis; Plenum publishers: New Yoirk, 2000; pp 726.
(57) (a) Huisgen, R.; Scheer, W.; Ma¨der, H. Azomethine ylide generation aziridinedicarboxylic esters: kinetics of the cis-trans isomerization and of the ring opening. Angew. Chem., Int. Ed. Engl. 1969, 8, 602–604. (b) Heine, H. W.; Peavy, R. Aziridines XI. Reaction of 1,2,3-triphenylaziridine with diethylacetylene dicarboxylate and maleic anhydride. Tetrahedron Lett. 1965, 6, 3123–3126. (c) Padwa, A.; Hamilton, L. Reactions of aziridines with dimethylacetylene dicarboxylate. Tetrahedron Lett. 1965, 6, 4363–4367.
(58) Vedejs, E.; West, F. G. Ylides by the desilylation of α-silyl onium salts. Chem. Rev. 1986, 86, 941–955.
(59) (a) Huisgen, R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem., Int. Ed. Engl. 1963, 2, 565–598. (b) Huisgen, R.; Grashey, R.; Steingruber, E. Azomethin-ylide und ihre 1.3-dipolaren cycloadditionen. Tetrahedron Lett. 1963, 22, 1441–1445.
(60) (a) Grigg, R.; Kemp, J.; Sheldrick, G.; Trotter, J. 1,3-Dipolar cycloaddition reactions of imines of α-amino-acid esters: X-ray crystal and molecular structure of methyl 4-(2-furyl)-2,7-diphenyl-6,8-dioxo-3,7-diazabicyclo[3.3.0]octane-2-
carboxylate. J. Chem. Soc., Chem. Commun. 1978, 101, 109–111. (b) Grigg, R.; Kemp, J. X=Y-ZH systems as potential 1,3-dipoles. The stereochemistry and regiochemistry of cycloaddition reactions of imines of α-amino-acid esters. Tetrahedron Lett. 1980, 21, 2461–2464.
(61) Najera, C.; Sansano, J. 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Org. Biomol. Chem. 2009, 7, 4567–4581.
(62) For reviews, see (a) Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev. 2005, 105, 2765–2809. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem. Rev. 2006, 106, 4484–4517.
(63) Stanley, L. M.; Sibi, M. P. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chem. Rev. 2008, 108, 2887–2902.
(64) Hwu, J. R.; Chang Hsu, Y. Stereospecific benzyne-iInduced olefination from β-amino alcohols and its application to the total synthesis of (–)-1-deoxy-D-fructose. Chem. Eur. J. 2011, 17, 4727–4731.
(65) (a) Tsuge, O.; Kanemasa S.; Yoshioka, M. Lithium bromide-triethylamine induced cycloaddition of N-alkylidene 2-amino esters and amides to electron-deficient olefins with high regio- and stereoselectivity. J. Org. Chem. 1988, 53, 1384–1391. (b) Alemparte, C.; Blay, G.; Jørgensen, K. A. A convenient procedure for the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides and alkenes. Org. Lett. 2005, 7, 4569–4572.
(66) Tsuge, O; Kanemasa, S.; Ohe, M.; Yorozu, K.; Takenaka, S.; Ueno, K. Simple generation of ester-stabilized azomethine ylides from 2-amino esters and carbonyl compounds. Stereochemistry of their cycloadditions. Bull. Chem. Soc. Jpn. 1987, 60, 4067–4078.
(67) (a) Tsuge, O; Kanemasa, S.; Takenaka, S. Stereoselective [3+2] cycloaddition reaction of pyridinium and thiazolium methylides to electron-deficient olefinic dipolarophiles. Heterocyles. 1983, 20, 1907–1912. (b) Tsuge, O; Kanemasa, S.; Takenaka, S. Stereochemical study on 1,3-dipolar cycloaddition reactions of heteroaromatic N-ylides with symmetrically substituted cis and trans olefins. Bull. Chem. Soc. Jpn. 1985, 58, 3137–3157. (c) Tsuge, O; Kanemasa, S.; Takenaka, S. Stereochemical study on 1,3-dipolar cycloaddition reactions of heteroaromatic N-Ylides with unsymmetrically substituted olefinic dipolarophiles. Bull. Chem. Soc. Jpn. 1985, 58, 3320–3336.
(68) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S.; Thianpatanagul, S.; Kanajun, S. Iminium ion route to azomethine yields from primary and secondary amines. J. Chem. Soc., Chem. Commun. 1986, 602–604.
(69) For recent reviews on benzyne, see: (a) Yeoman, J. T. S.; Reisman, S. E. Organic chemistry: single molecules put a ring on it. Nature 2012, 490, 179–180. (b) Wenk, H. H.; Winkler, M.; Sander, W. One century of aryne chemistry. Angew. Chem. Int. Ed. 2003, 42, 502–528.
(70) Aly, A. A.; Mohamed, N. K.; Hassan, A. A.; Mourad, A.-F. E. Reaction of diimines and benzyne. Tetrahedron 1999, 55, 1111¬¬–1118.
(71) Guyot, M.; Molho, D. Nouvelle methode de synthese d'acides homophtaliques et d'homophtalimides par voie arynique. Application a la synthese de la Melleine.. Tetrahedron Lett. 1973, 14, 3433¬¬–3436.
(72) Vesterager, K.; Jørgensen, K. A. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: New York, 2002; pp 820–821.
(73) Viso, A.; Pradilla, R. F.; García, A.; Guerrero-Strachan, C.; Alonso, M.; Tortosa, M.; Flores, A.; Martinez-Ripoll, M.; Fonseca, I.; Andre, I.; Rodriguez, A. Highly diastereoselective [3+ 2] cycloadditions between nonracemic p‐tolylsulfinimines and iminoesters: an efficient entry to enantiopure imidazolidines and vicinal diaminoalcohols. Chem. Eur. J. 2003, 9, 2867–2876.
(74) Padwa, A. In 1,3-Dipolar Cycloaddition Chemisry; Taylor, E.C., Weissberger, A., Eds.; Wiley-Interscience: New York, 1984.
(75) Burnier, G.; Vogel, P. Synthesis and tandem Diels-Alder reactivity of 1,3-dimethoxy-5,6,7,8-tetramethylidenebicyclo[2.2.2]oct-2-ene. Chimia 1987, 41, 429–431.
(76) Le Chatelier, H. L. Comptes-rendus de l’Académie des sciences. Compt. Rend. 1884, 99, 786–789.
(77) Le Chatelier, H. L. Recherches expérimentales et théoriques sur les équilibres chimiques. Ann. Mines. 1888, 13, 157–182.
(78) Grigg, R.; Kemp, J.; Thompson, N. X=Y-ZH systems as potential 1,3-dipoles. Tetrahedron Lett. 1978, 31, 2827–2830.
(79) Grigg, R.; Gunaratne, H. Q. N.; Kemp, J. X=Y–ZH systems as potential 1,3-dipoles. Part 1. Background and scope. J. Chem. Soc., Perkin Trans. 1984, 1, 41–46.
(80) Amornraksa, K.; Barr, D.; Donegan, G.; Grigg, R.; Ratananukul, P.; Sridharan, V. X=Y-ZH compounds as potential 1,3-dipoles. Part 24. Preparation and thermal fragmentation of imidazolidines. Influence of metal salts on pyrrolidine versus imidazolidine formation. Tetrahedron 1989, 45, 4649–4668.
(81) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25
(82) Galley, G.; Liebscher, J.; Patzel, M. Polyfunctionalized pyrrolidines by stereoselective 1,3-dipolar cycloaddition of azomethine ylides to chiral enones. J. Org. Chem. 1995, 60, 5005-5010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *