帳號:guest(3.133.123.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林威呈
作者(外文):Lin, Wei-Chen
論文名稱(中文):利用THz-TDS的方法量測複數材料的介電係數和導磁係數
論文名稱(外文):A new approach for simultaneous characterization of the material's permittivity and permeability by THz time-domain spectroscopy
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):張士欽
杜朝海
張宏宜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022537
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:74
中文關鍵詞:兆赫波介電值介電係數導磁係數折射率
外文關鍵詞:TerahertzDielectricPermeabilityPermittivityIndex of refraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1286
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
目前發展兆赫波的元件越來越廣泛,例如:波導管、相移器、矽基板特性,由於兆赫波的元件需要利用到某些材料來構成,所以對於量測材料在兆赫波下的介電係數和導磁係數也日益重要。
目前我們量測的材料有藍寶石(Sapphire)、矽基板(Silicon)、石英(Fused silica)和磁性材料鐵氧體,利用THz-TDS (terahertz time-domain spectroscopy)的方法,使用的是光導天線來產生兆赫波,操作頻段位於0.2~2 THz之間。
測量到經由空氣的穿透波(Reference pulse)和經過材料產生多重反射的波,這時取出經由空氣的穿透波、由材料穿出的第一道穿透波和第二道穿透波,經過計算後可同時得到材料複數的介電係數和導磁係數,比起一般測量材料的折射率和吸收係數,這個方法提供更加了解材料電性和磁性。
Abstract
The characteristics of a material in THz region, including its permittivity and permeability are important for developing THz devices, such as THz waveguides, substrate and phase shifter/circulator.
The electric properties of crystalline dielectric sapphire, high-resistivity/low-resistivity silicon, and fused silica and the magnetic properties of ferrite from 0.2 THz to 2.0 THz have been clearly measured by terahertz time-domain spectroscopy.
By detecting and analyzing the reference pulse (through the air) and the multiple-reflection pulses, including the first transmitted signal and the second transmitted signal with one round-trip traveling (through the sample), the complex permittivity and permeability could be simultaneously retrieved. Those results are consistent with the previous studies (refractive index and far-infrared absorption) but provides a more in-depth understanding of materials' electric and magnetic properties.
內文目錄
摘要 I
Abstract II
致謝 III
內文目錄 IV
附圖目錄 VI
第一章 緒論 1
1.1 兆赫波-簡介 1
1.2 兆赫波 - THz技術的相關研究 2
1.3 兆赫波-應用 2
1.4 研究動機 4
第二章 介電係數、導磁係數和折射率 5
2.1 介電係數 (Complex permittivity) 5
2.2 導磁係數 (permeability) 8
2.3 折射率(Index of refraction) 10
2.4 德汝德模型(Drude model) 12
第三章 兆赫波實驗裝置 13
3.1 雷射簡介 13
3.1.1 二極體激發連續波雷射(Millennia V, Spectra-Physics) 13
3.1.2 鈦:藍寶石鎖模雷射系統(Ti: Sapphire Laser) 14
3.2 THz的產生原理 15
3.2.1 光電導產生機制 15
3.2.2 光整流模式產生機制 16
3.3 THz輻射偵測原理 18
3.3.1 光導天線取樣機制(Photoconductive antenna Sampling) 18
3.3.2 電光取樣機制(Electro-Optics Sampling) 19
3.4 THz-TDS光路圖簡介(光導天線系統) 20
第四章 理論推導和模擬分析 22
4.1 單一邊界的穿透和反射推導 22
4.2 兩邊界上的多重反射 26
4.3 理論計算和模擬分析 28
4.4 相位差異問題  (數學) 33
4.5 相位差異問題  (物理) 36
第五章 實驗數據與分析 39
第六章 結論 54
參考文獻 55
Appendix A: 在Ka-band下量測複數材料的介電係數和導磁係數 60
Appendix B: 常見的塑膠材料在THz的折射率&吸收係數 71
[1] J.D. Jackson, Classical Electrodynamics, 3rd ed.
[2] T.H. Chang, Lecture note of course Electrodynamics
[3] D.J. Griffiths, Introduction to Electrodynamics, 3rd ed.
[4] David M. Pozar Microwave Engineering, 3/e.
[5] David K. Cheng Fundamentals of Engineering Electromagnetic.
[6] 黃俊凱, “氧離子佈植砷化鎵之載子動力學研究” 國立中山大學光電工程研究所碩士論文 2008年4月
[7] 張哲嘉, “利用脈衝雷射與兆赫波來研究奈米碳管的動力行為” 國立清華大學光電工程研究所碩士論文 2006年7月
[8] 林松輝, “利用飛秒脈衝形變技術研究光導天線輻射兆赫波之特性”國立交通大學光電工程研究所碩士論文 2008年7月
[9] 林晏徵, “氧化銦錫薄膜與奈米結構兆赫頻段光學特性之研究” 國立交通大學光電工程研究所碩士論文 2009年7月
[10] 馬志宇, “利用兆赫波時域光譜探測半導體次波長孔洞陣列的共振行為” 國立清華大學光電工程研究所碩士論文 2010年6月
[11] 黃世睿, “微波波段材料特性量測” 國立清華大學應用物理研究所碩士論文 2013年7月
[12] 徐嘉男, “透過脈衝整形技術在窄頻波長可調與脈衝激發雙光子吸收兆赫波輻射增強之研究” 國立中山大學光電工程學系碩士論文
[13] 許宏銘, “透過量子同調在寬頻兆赫波輻射增強之研究” 國立中山大學光電工程學系碩士論文 2010年7月
[14] 陳詠謙, “微波陶瓷材料xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3(x=0, 0.25, 0.5, 0.75, 1)與Re3Ga5O12 (Re=Nd, Sm, Eu, Dy)之兆赫光譜研究” 國立台灣師範大學物理系研究所碩士論文 2009年6月
[15] 曾冠儒, “氧化銦錫奈米結構光學特性與電性之研究” 國立交通大學光電工程研究所碩士論文 2010年7月
[16] 張維哲, “多壁奈米碳管在兆赫頻段的介電函數之研究” 國立清華大學光電工程研究所碩士論文 2009年7月
[17]Shian-Wen Chang ,Tai-Shen Wang ,Chun-Jen Weng ,Shyh-Shii Pai, “Study on Reshaping Waveforms of THz TimeDomainSpectroscopy with Millimeter Metal Devices” , 科儀新知第三十一卷第五期99.4
[18] 林志明, “兆赫波的產生與波形量測的發展” 國立中正大學物理研究所碩士論文 2010年2月
[19] 黃照仁, “THz 輻射光導偶極天線陣列之研製與特性” 國立交通大學光電工程研究所碩士論文 2005年7月
[20] B.Ferguson ,X.C.Zhang ,“Materials for terahertz science and technology ,”nature material , 1 , 26-33(2002)
[21] E. Tokunaga , A. Terasaki ,T. Kobayashi ,“Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy ,” August 15, 1992 / Vol. 17, No. 16 / OPTICS LETTERS
[22] J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier ,“Single-shot spectral interferometry with chirped pulses ,” OPTICS LETTERS / Vol. 26, No. 20 / October 15, 2001)
[23] MARTIN VAN EXTER AND DANIEL R. GRISCHKOWSKY, SENIOR MEMBER, IEEE ,“Characterization of an Optoelectronic Terahertz Beam System ,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.. 38. NO. 11. NOVEMBER 1990
[24] C. Winnewisser , F. Lewen , H. Helm ,“Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy ,” Appl. Phys. A 66, 593–598 (1998)
[25] James A. Harrington, Roshan George, Eric Mueller, and Pal Pedersen ,“Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation ,” 18 October 2004 / Vol. 12, No. 21 / OPTICS EXPRESS [26] Martin van Exter and D. Grischkowsky ,“Optical and electronic properties of doped silicon from 0.1 to 2THz ,”Appl. Phys. Lett. 56 (17),23 April 1990
[27] Martin van Exter and D. Grischkowsky ,“Carrier dynamics of electrons and holes in moderately doped silicon ,” PHYSICAL REVIEW B VOLUME 41, NUMBER 17, 15 JUNE 1990-I [28] D. Grischkowsky, Seren Keiding, Martin van Exter,* and Ch. Fattinger ,“Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Vol.7,No. 10/October 1990/J. Opt. Soc. Am. B
[29] Jianming Dai, Jiangquan Zhang, Weili Zhang, and D. Grischkowsky ,“Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Vol. 21, No. 7/July 2004/J. Opt. Soc. Am. B
[30] R. Mendis and D. Grischkowsky ,“Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters, Vol. 26, No 11,/June 1 , 2001
[31] E. Tokunaga, A. Terasaki, and T. Kobayashi ,“Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Optics Letters, Vol. 17, Issue 16, pp. 1131-1133 (1992)
[32] E. Tokunaga, A. Terasaki, and T. Kobayashi ,“Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Optics Letters, Vol. 17, Issue 16, pp. 1131-1133 (1992)
[33] R. Mendis and D. Grischkowsky ,“Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449 (2000)
[34] Kanglin Wang & Daniel M. Mittleman ,“Metal wires for terahertz wave guiding,” Nature 432, 376-379 (18 November 2004)
[35] S. Coleman and D. Grischkowsky ,“A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics,” Appl. Phys. Lett. 83, 3656 (2003)
[36] G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky ,“Terahertz waveguides,” JOSA B, Vol. 17, Issue 5, pp. 851-863 (2000)
[37] Coleman, S. and Grischkowsky, D. ,“Parallel plate THz transmitter,” Applied Physics Letters,Volume:84, Issue: 5, Feb 2004
[38] Y.-P. Yang, X.-L. Xu, W. Yan, L. Wang, “Characteristics of THz
emission from GaAs crystal excited by 400nm and 800nm optical
pulses,” Chin. Phys. Lett. 22, 2123 (2005)
[39] Martin van Exter, Ch. Fattinger, and D. Grischkowsky,“Terahertz time-domain spectroscopy of water vapor ,” Optics Letters, Vol. 14, Issue 20, pp. 1128-1130 (1989)
[40] Martin C. Nuss, Joseph Orenstein,“Terahertz time-domain spectroscopy ,” Millimeter and Submillimeter Wave Spectroscopy of Solids
Topics in Applied Physics Volume 74, 1998, pp 7-50
[41] P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting and X.-C. Zhang,“A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy ,” J. Appl. Phys. 89, 2357 (2001);
[42] Lionel Duvillaret, Fred´ eric Garet, and Jean-Louis Coutaz, “A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy,” JIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER 1996;
[43] M. Schall, H. Helm, S. R. Keiding, “Far Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy,” Millimeter and Submillimeter Wave Spectroscopy of Solids
Topics in Applied Physics Volume 74, 1998, pp 7-50;
[44] N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of N‐ and P‐type GaAs using THz time‐domain spectroscopy,” Appl. Phys. Lett. 61, 840 (1992);
[45] R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Optics Letters, Vol. 20, Issue 15, pp. 1646-1648 (1995);
[46] C. Kadlec, H. Němec, F. Kadlec, F. Dominec, R.Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, P. Mounaix, P. Kužel, “TiO2 microspheres metamaterials with negative permeability in the terahertz bandwidth,” IRMMW 2012 – 37th International Conference on Infrared Millimeter and Terahertz Waves, At Wollongong, Australia;
[47] H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” APPLIED PHYSICS LETTERS 100, 061117 (2012);
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *