帳號:guest(3.145.88.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃廷宇
作者(外文):Huang, Ting-Yu
論文名稱(中文):Testing adiabatic expansion and the equipartition assumption in parsec scale AGN jets with the source OH-010
論文名稱(外文):在活躍星系核OH-010的噴流中檢測絕熱膨脹與能量均分兩噴流模型
指導教授(中文):江國興
指導教授(外文):Albert Kong
口試委員(中文):水野陽介
後藤友嗣
口試委員(外文):Yosuke Mizuno
Tomotsugu Goto
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022531
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:149
中文關鍵詞:黑洞噴流電漿絕熱膨脹等溫膨脹
外文關鍵詞:BlacJetPlasmaAdiabatic ExpansionIsothermal Expansion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:231
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在本論文中,我們研究類星體 (Quasar) OH-010 之物理特性。我們使用 MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) 團隊所維護的網路資料庫中利用超長基線陣列 (Very Long Baseline Array,簡稱 VLBA) 在頻率 15.4 GHz 觀測的資料與數個單天線電波望遠鏡 (Single Dish Radio Telescope),涵蓋頻率 4.8、8、14.5、22、37與 90 GHz 的長期量測資料(光變曲線)。本研究的首要目標為檢測兩個當今常用於活躍星系核噴流 (active galactic nuclei jets) 分析中之假設:其ㄧ、由 Marscher 與 Gear 於 1985 年提出的絕熱膨脹噴流模型 (adiabatic jet model);其二、由 Blandford 與 Konigl 於 1979 年提出的能量均分噴流模型 (equipartition jet model)。我們利用 VLBA 的數據發現兩個噴流component 在其光通量與其大小之間具有冪律關係,是為上述兩模型之特徵。進一步分析使我們得知 component 4 於噴流之初始位置滿足(粒子與磁場間)能量均分並在噴流行進過程中持續滿足此關係;而對於 component 3 我們並無法區分絕熱膨脹噴流模型與能量均分噴流模型何者較為適合,另外與 component 4 相異的是,component 3 不具有初始的能量均分關係。
結合 VLBA 與單天線望遠鏡之資料顯示 component 2 與 component 3 兩者皆與(單天線望遠鏡之)光變曲線中的兩個爆發 (flare) 有關。我們提議使用具有拋物線 (parabolic) 、圓錐 (conical) 雙重結構之噴流來解釋此現象,此結構下,當噴流行進於拋物線結構中會加速、而於圓錐結構中則為等速。整體而言,我們在此天體中之發現與 M87 中之噴流相當類似。
The quasar OH-010 is studied using data obtained by the Very Long Baseline Array (VLBA)at 15.4 GHz from the MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA
Experiments) archive and light curves from single dish observations at 4.8, 8, 14.5, 22, 37,and 90 GHz. One goal of this works is to examine the applicability of two commonly used assumptions for active galactic nuclei jets: an adiabatic jet (Marscher & Gear 1985) or a jet which holds equipartition between particle and field energies (Blandford & Konigl 1979) to the behavior of this source. We find a clear power law signature in two VLBI (Very Long Baseline Interferometry) components and found that for component 4, it is consistent with having initial equipartition and remains to be so along the jet. Component 3 in contrast can
be explained by either case but it does not have initial equipartition between particle and magnetic field.

Connecting VLBA data with light curve data revealed that both VLBI components 2 and 3 may be related to two flares in the light curve. We propose that such behavior can be explained by a jet which has an initial parabolic structure where components exhibit accelerated motion followed by a transition to a conical structure in which components travel
at constant velocity. We find this transition to have properties similar to a recollimation shock and the overall finding is reminiscent of the jet in M87. The finding of a quasi-stationary component on VLBI maps ∼ 0.29 mas downstream of the radio core also supports this scenario.
1 Introduction 1
1.1 Introduction to AGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 What are AGNs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Classes of AGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Jets from AGNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Relativistic physics in jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Superluminal motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Upper bounds on the viewing angle . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Frame transforms of various physical quantities . . . . . . . . . . . . . 8
1.3 Why is synchrotron radiation from a non-thermal population considered as
the main source of radio emission? . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Toward the understanding of jets . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 A spherical adiabatic cloud . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Relativistic motion of the radio emitting sources . . . . . . . . . . . . . 13
1.4.3 Relativistic Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Jet Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 Synchrotron cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Inverse Compton cooling . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.3 Adiabatic cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Observational support for the shock-in-jet model . . . . . . . . . . . . . . . . . 17
1.7 M87: A special case? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7.1 The jet at various scales . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7.2 The jet velocity structure . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7.3 HST-1 — A re-collimation shock? . . . . . . . . . . . . . . . . . . . . . 23
1.8 The radio core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8.1 What is the core? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8.2 Core shift methods: toward an understanding of jet physics . . . . . . . 25
1.8.3 Radio galaxies versus quasars . . . . . . . . . . . . . . . . . . . . . . . 28
1.9 Quasi-Stationary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.9.1 Well studied cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.9.2 γ-ray emission far from the jet base . . . . . . . . . . . . . . . . . . . . 31
1.10 Light curve behaviors of quasars . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.10.1 Empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.10.2 Physical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.11 OH-010 (B0605-085) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.11.1 The kpc scale jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.11.2 The pc scale jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.11.3 Total flux measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.11.4 Possible jet precession . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.11.5 Double peaks in light curves . . . . . . . . . . . . . . . . . . . . . . . . 42
2 Purpose of research 44
3 Theory 45
3.1 Modified synchrotron blob model . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Opacity, Intensity, and Flux of the blob . . . . . . . . . . . . . . . . . . 50
3.1.3 The 4 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Flux at the turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.5 Light curves of adiabatically expanding blobs . . . . . . . . . . . . . . 59
3.1.6 Physical parameters from core shifts . . . . . . . . . . . . . . . . . . . 60
3.1.7 Extracting B

, N

, m, n: Using VLBI observations . . . . . . . . . . . 64
3.1.8 Extracting m, n using the amplitude of light curves at multi-frequencies 65
3.2 Shock-in-jet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Flare stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.2 Main features of the three stages . . . . . . . . . . . . . . . . . . . . . 75
4 Methods 78
4.1 Source selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 VLBA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Map cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Light curve data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Light curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Failed methods for light curve fitting . . . . . . . . . . . . . . . . . . . 88
4.3.3 Fitting the decay of flare 5 . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Error extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.1 Varying reduced chi-square . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.2 Bootstrapping Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 VLBA errors and extraction . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Light curve errors and extraction . . . . . . . . . . . . . . . . . . . . . 101
4.5 Error propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Data Flagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Deriving basic jet properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7.1 Jet kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7.2 Jet opening angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7.3 Flux-Size relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.8 Component-Flare association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5 Results 112
5.1 Jet kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Jet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Flux—Size Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 What stages are the observed components in? . . . . . . . . . . . . . . 118
5.3.2 Adiabatic or constant ratio? . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Is there equipartition? . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Gaussian flare decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Flux decay of flare 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Flare—VLBI component connection . . . . . . . . . . . . . . . . . . . . . . . . 128
6 Discussion 132
6.1 Are the components in the decay stage? . . . . . . . . . . . . . . . . . . . . . 132
6.2 Magnetic field structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Double peak phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7 Conclusions 137
8 Future work 139
9 Acknowledgements 140
Bibliography 140
Abramowski, A., Acero, F., Aharonian, F., et al. 2012, ApJ, 746, 151
Agudo, I., Jorstad, S. G., Marscher, A. P., et al. 2011, ApJ, 726, L13
Algaba, J. C., Gabuzda, D. C., & Smith, P. S. 2012, MNRAS, 420, 542
Aller, H. D., Aller, M. F., & Hughes, P. A. 1996, in Astronomical Society of the Pacific
Conference Series, Vol. 110, Blazar Continuum Variability, ed. H. R. Miller, J. R. Webb,
& J. C. Noble, 208
Aller, M. F. 2011, private communication
Aller, M. F., Aller, H. D., Hughes, P. A., & Latimer, G. E. 1999, ApJ, 512, 601
Andrew, B. H., MacLeod, J. M., Harvey, G. A., & Medd, W. J. 1978, AJ, 83, 863
Arshakian, T. G., Le´on-Tavares, J., Lobanov, A. P., et al. 2010, MNRAS, 401, 1231
Asada, K., & Nakamura, M. 2012, ApJ, 745, L28
Asada, K., Nakamura, M., Doi, A., Nagai, H., & Inoue, M. 2014, ApJ, 781, L2
Avni, Y. 1976, ApJ, 210, 642
Bach, U., Villata, M., Raiteri, C. M., et al. 2006, A&A, 456, 105
Bash, F. N. 1968, ApJ, 152, 375
Bietenholz, M. F., Bartel, N., & Rupen, M. P. 2004, ApJ, 615, 173
Biretta, J. A., Sparks, W. B., & Macchetto, F. 1999, ApJ, 520, 621
Blandford, R. D., & K¨onigl, A. 1979, ApJ, 232, 34
Blandford, R. D., & McKee, C. F. 1977, MNRAS, 180, 343
Blandford, R. D., McKee, C. F., & Rees, M. J. 1977, Nature, 267, 211
Bondi, M., Padrielli, L., Fanti, R., et al. 1996a, A&AS, 120, 89
—. 1996b, A&A, 308, 415
Burbidge, G. R., Jones, T. W., & Odell, S. L. 1974, ApJ, 193, 43
Cara, M., & Lister, M. L. 2008, ApJ, 674, 111
Carilli, C. L., Perley, R. A., Dreher, J. W., & Leahy, J. P. 1991, ApJ, 383, 554
Chang, C. S., Ros, E., Kovalev, Y. Y., & Lister, M. L. 2010, A&A, 515, A38
Cheung, C. C., Harris, D. E., & Stawarz, L. 2007, ApJ, 663, L65
Cirasuolo, M., Celotti, A., Magliocchetti, M., & Danese, L. 2003, MNRAS, 346, 447
Clark, B. G., Kellermann, K. I., Bare, C. C., Cohen, M. H., & Jauncey, D. L. 1968a, ApJ,
153, 705
—. 1968b, ApJ, 153, L67
Cocke, W. J., & Pacholczyk, A. G. 1975, ApJ, 195, 279
Cohen, M. H., Meier, D. L., Arshakian, T. G., et al. 2014, ApJ, 787, 151
Collmar, W. 2002, Mem. Soc. Astron. Italiana, 73, 99
Condon, J. J., & Dennison, B. 1978, ApJ, 224, 835
Cooper, N. J., Lister, M. L., & Kochanczyk, M. D. 2007, ApJS, 171, 376
Croke, S. M., & Gabuzda, D. C. 2008, MNRAS, 386, 619
Dent, W. A., & Kapitzky, J. E. 1976, AJ, 81, 1053
Dent, W. A., Kapitzky, J. E., & Kojoian, G. 1974, AJ, 79, 1232
Edelson, R. A., & Krolik, J. H. 1988, ApJ, 333, 646
Fan, J. H., Liu, Y., Yuan, Y. H., et al. 2007, A&A, 462, 547
Ferraz-Mello, S. 1981, AJ, 86, 619
Fomalont, E. B. 1968, ApJS, 15, 203
Fomalont, E. B. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180,
Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley,
301
Fromm, C. M., Ros, E., Perucho, M., et al. 2013a, A&A, 557, A105
Fromm, C. M., Perucho, M., Ros, E., et al. 2011, A&A, 531, A95
Fromm, C. M., Ros, E., Perucho, M., et al. 2013b, A&A, 551, A32
Gebhardt, K., Adams, J., Richstone, D., et al. 2011, ApJ, 729, 119
Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G. 2011, MNRAS, 414, 2674
Ghosh, T., Gopal-Krishna, & Rao, A. P. 1994, A&AS, 106, 29
Giroletti, M., Hada, K., Giovannini, G., et al. 2012, A&A, 538, L10
Grier, C. J., Peterson, B. M., Pogge, R. W., et al. 2012, ApJ, 755, 60
Guirado, J. C., Marcaide, J. M., Elosegui, P., et al. 1995, A&A, 293, 613
Gurwell, M. A., Peck, A. B., Hostler, S. R., Darrah, M. R., & Katz, C. A. 2007, in Astro-
nomical Society of the Pacific Conference Series, Vol. 375, From Z-Machines to ALMA:
(Sub)Millimeter Spectroscopy of Galaxies, ed. A. J. Baker, J. Glenn, A. I. Harris, J. G.
Mangum, & M. S. Yun, 234
Hada, K., Doi, A., Kino, M., et al. 2011, Nature, 477, 185
Hada, K., Doi, A., Nagai, H., et al. 2013a, ApJ, 779, 6
Hada, K., Kino, M., Doi, A., et al. 2013b, ApJ, 775, 70
Haga, T., Doi, A., Murata, Y., et al. 2013, in European Physical Journal Web of Conferences,
Vol. 61, European Physical Journal Web of Conferences, 8004
Harris, D. E., Biretta, J. A., Junor, W., et al. 2003, ApJ, 586, L41
Harris, D. E., Cheung, C. C., Biretta, J. A., et al. 2006, ApJ, 640, 211
Harris, D. E., Cheung, C. C., Stawarz, L., Biretta, J. A., & Perlman, E. S. 2009, ApJ, 699,
305
Hirotani, K. 2005, ApJ, 619, 73
H¨ogbom, J. A. 1974, A&AS, 15, 417
Homan, D. C., Kadler, M., Kellermann, K. I., et al. 2009, ApJ, 706, 1253
Homan, D. C., & Lister, M. L. 2006, AJ, 131, 1262
Hovatta, T., Lister, M. L., Aller, M. F., et al. 2012a, AJ, 144, 105
—. 2012b, AJ, 144, 105
Hovatta, T., Nieppola, E., Tornikoski, M., et al. 2008, A&A, 485, 51
Hovatta, T., Valtaoja, E., Tornikoski, M., & L¨ahteenm¨aki, A. 2009, A&A, 494, 527
Hovatta, T., Aller, M. F., Aller, H. D., et al. 2014, ArXiv e-prints, arXiv:1404.0014
Hufnagel, B. R., & Bregman, J. N. 1992, ApJ, 386, 473
Jenness, T., Robson, E. I., & Stevens, J. A. 2010, MNRAS, 401, 1240
Jones, T. W., & Burbidge, G. R. 1973, ApJ, 186, 791
Jones, T. W., & Tobin, W. 1977, ApJ, 215, 474
Jord´an, A., Cˆot´e, P., Blakeslee, J. P., et al. 2005, ApJ, 634, 1002
Jorstad, S. G., Marscher, A. P., Lister, M. L., et al. 2005, AJ, 130, 1418
Kellermann, K. I. 1966, ApJ, 146, 621
Kellermann, K. I., & Pauliny-Toth, I. I. K. 1969, ApJ, 155, L71
Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195
Kellermann, K. I., Clark, B. G., Bare, C. C., et al. 1968, ApJ, 153, L209
Kellermann, K. I., Lister, M. L., Homan, D. C., et al. 2004, ApJ, 609, 539
Konigl, A. 1981, ApJ, 243, 700
Kotilainen, J. K. 1998, A&AS, 132, 197
Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B., & Zensus, J. A. 2008, A&A, 483, 759
Kudryavtseva, N. A., Gabuzda, D. C., Aller, M. F., & Aller, H. D. 2011a, MNRAS, 415, 1631
Kudryavtseva, N. A., Britzen, S., Witzel, A., et al. 2011b, A&A, 526, A51
Kutkin, A. M., Sokolovsky, K. V., Lisakov, M. M., et al. 2014, MNRAS, 437, 3396
Laan, H. V. D. 1966, Nature, 211, 1131
Lara, L., Alberdi, A., Marcaide, J. M., & Muxlow, T. W. B. 1994, A&A, 285, 393
Larionov, V. M., Jorstad, S. G., Marscher, A. P., et al. 2008, A&A, 492, 389
Legg, T. H. 1984, in IAU Symposium, Vol. 110, VLBI and Compact Radio Sources, ed.
R. Fanti, K. I. Kellermann, & G. Setti, 183
Le´on-Tavares, J., Lobanov, A. P., Chavushyan, V. H., et al. 2010, ApJ, 715, 355
Le´on-Tavares, J., Valtaoja, E., Tornikoski, M., L¨ahteenm¨aki, A., & Nieppola, E. 2011, A&A, 532, A146
Lister, M. L., & Homan, D. C. 2005, AJ, 130, 1389
Lister, M. L., Aller, H. D., Aller, M. F., et al. 2009a, AJ, 137, 3718
Lister, M. L., Cohen, M. H., Homan, D. C., et al. 2009b, AJ, 138, 1874
Lister, M. L., Aller, M. F., Aller, H. D., et al. 2013, AJ, 146, 120
Litchfield, S. J., Stevens, J. A., Robson, E. I., & Gear, W. K. 1995, MNRAS, 274, 221
Lobanov, A. P. 1998, A&A, 330, 79
Lobanov, A. P., & Zensus, J. A. 1999, ApJ, 521, 509
Lobanov, A. P., Krichbaum, T. P., Graham, D. A., et al. 2000, A&A, 364, 391
Lu, R.-S., Shen, Z.-Q., Krichbaum, T. P., et al. 2012, A&A, 544, A89
Lyutikov, M., Pariev, V. I., & Gabuzda, D. C. 2005, MNRAS, 360, 869
MacLeod, J. M., & Andrew, B. H. 1968, Astrophys. Lett., 1, 243
Macquart, J.-P., Godfrey, L. E. H., Bignall, H. E., & Hodgson, J. A. 2013, ApJ, 765, 142
Marcaide, J. M., & Shapiro, I. I. 1984, ApJ, 276, 56
Marscher, A. P. 1978, ApJ, 219, 392
—. 2011, Nature, 477, 164
Marscher, A. P., & Gear, W. K. 1985, ApJ, 298, 114
McNaron-Brown, K., Johnson, W. N., Jung, G. V., et al. 1995, ApJ, 451, 575
Medd, W. J., Andrew, B. H., Harvey, G. A., & Locke, J. L. 1972, MmRAS, 77, 109
Meier, D. L. 2003, New Astronomy Reviews, 47, 667
—. 2012, Black Hole Astrophysics: The Engine Paradigm
Nakamura, M., & Asada, K. 2013, ApJ, 775, 118
O’Dea, C. P., Barvainis, R., & Challis, P. M. 1988, AJ, 96, 435
Orienti, M., Koyama, S., D’Ammando, F., et al. 2013, MNRAS, 428, 2418
O’Sullivan, S. P., & Gabuzda, D. C. 2009, MNRAS, 400, 26
Owen, F. N., & Ledlow, M. J. 1994, in Astronomical Society of the Pacific Conference Series,
Vol. 54, The Physics of Active Galaxies, ed. G. V. Bicknell, M. A. Dopita, & P. J. Quinn,
319
Padovani, P. 1997, Mem. Soc. Astron. Italiana, 68, 47
Padrielli, L., Romney, J. D., Bartel, N., et al. 1986, A&A, 165, 53
Padrielli, L., Aller, M. F., Aller, H. D., et al. 1987, A&AS, 67, 63
Paltani, S., & T¨urler, M. 2005, A&A, 435, 811
Pauliny-Toth, I. I. K., & Kellermann, K. I. 1966, ApJ, 146, 634
Perlman, E. S., Adams, S. C., Cara, M., et al. 2011, ApJ, 743, 119
Pushkarev, A., Kovalev, Y., & Lobanov, A. 2008a, in The role of VLBI in the Golden Age
for Radio Astronomy
Pushkarev, A. B., Hovatta, T., Kovalev, Y. Y., et al. 2012, A&A, 545, A113
Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L., & Savolainen, T. 2009, A&A, 507, L33
Pushkarev, A. B., Kovalev, Y. Y., & Lobanov, A. P. 2008b, Mem. Soc. Astron. Italiana, 79,
1170
Pyatunina, T. B., Kudryavtseva, N. A., Gabuzda, D. C., et al. 2006, MNRAS, 373, 1470
—. 2007, MNRAS, 381, 797
Rani, B., Krichbaum, T. P., Fuhrmann, L., et al. 2013, A&A, 552, A11
Rees, M. J. 1967, MNRAS, 135, 345
Reuter, H.-P., Kramer, C., Sievers, A., et al. 1997, A&AS, 122, 271
Robson, E. I., Stevens, J. A., & Jenness, T. 2001, MNRAS, 327, 751
Ros, E., & Lobanov, A. P. 2001, in 15th Workshop Meeting on European VLBI for Geodesy
and Astrometry, ed. D. Behrend & A. Rius, 208
Rybicki, G. B., & Lightman, A. P. 1986, Radiative Processes in Astrophysics
Sambruna, R. M. 2004, Advances in Space Research, 34, 2571
Schinzel, F. K., Lobanov, A. P., Taylor, G. B., et al. 2012, A&A, 537, A70
Seielstad, G. A., & Berge, G. L. 1975, AJ, 80, 271
Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1994, in Bulletin of the American Astro-
nomical Society, Vol. 26, Bulletin of the American Astronomical Society, 987–989
Shepherd, M. C., Pearson, T. J., & Taylor, G. B. 1995, in Bulletin of the American Astro-
nomical Society, Vol. 27, Bulletin of the American Astronomical Society, ed. B. J. Butler
& D. O. Muhleman, 903
Shklovsky, J. 1965, Nature, 206, 176
Slish, V. I. 1963, Nature, 199, 682
Sokolovsky, K. V., Kovalev, Y. Y., Pushkarev, A. B., Mimica, P., & Perucho, M. 2011, A&A,
535, A24
Stawarz, L., Aharonian, F., Kataoka, J., et al. 2006, MNRAS, 370, 981
Stein, W. A., Odell, S. L., & Strittmatter, P. A. 1976, ARA&A, 14, 173
Steppe, H., Liechti, S., Mauersberger, R., et al. 1992, A&AS, 96, 441
Steppe, H., Salter, C. J., Chini, R., et al. 1988, A&AS, 75, 317
Steppe, H., Paubert, G., Sievers, A., et al. 1993, A&AS, 102, 611
Stevens, J. A., Litchfield, S. J., Robson, E. I., et al. 1996, ApJ, 466, 158
Stickel, M., Kuehr, H., & Fried, J. W. 1993, A&AS, 97, 483
Terasranta, H., & Valtaoja, E. 1994, A&A, 283, 51
Ter¨asranta, H., Wiren, S., Koivisto, P., Saarinen, V., & Hovatta, T. 2005, A&A, 440, 409
Ter¨asranta, H., Tornikoski, M., Mujunen, A., et al. 1998, A&AS, 132, 305
Ter¨asranta, H., Achren, J., Hanski, M., et al. 2004, A&A, 427, 769
Tornikoski, M., Valtaoja, E., Teraesranta, H., et al. 1996, A&AS, 116, 157
Torres, D. F. 2003, ArXiv Astrophysics e-prints, astro-ph/0308069
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
Valtaoja, E., L¨ahteenm¨aki, A., Ter¨asranta, H., & Lainela, M. 1999, ApJS, 120, 95
Valtaoja, E., Terasranta, H., Urpo, S., et al. 1992, A&A, 254, 71
Visvanathan, N. 1973, ApJ, 179, 1
Walker, R. C., Dhawan, V., Romney, J. D., Kellermann, K. I., & Vermeulen, R. C. 2000,
ApJ, 530, 233
Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, ApJ, 526, 579
White, R. L., Becker, R. H., Gregg, M. D., et al. 2000, ApJS, 126, 133
Woo, J.-H., & Urry, C. M. 2002, ApJ, 579, 530
Zhou, M., & Cao, X.-W. 2009, Research in Astronomy and Astrophysics, 9, 293
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *