帳號:guest(3.147.74.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李淑鈴
作者(外文):Li, Shu Ling
論文名稱(中文):發展加熱片輔助式化學氣相沉積法於成長高品質石墨烯
論文名稱(外文):Development of Thermal Plate-assisted Chemical Vapor Deposition for Growth of High-quality Graphene
指導教授(中文):陳正中
指導教授(外文):Chen, Jeng Chung
口試委員(中文):齊正中
林大欽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022527
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:石墨烯成長焦耳加熱拉曼光譜二維材料
外文關鍵詞:graphenejoule heatingRaman spectroscopytwo-dimensional materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:248
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
在此篇論文中,我們在實驗室內建立了另一套新的化學氣相沉積系統(加熱片輔助式化學氣相沉積, TPACVD),此系統結合了化學氣相沉積技術與加熱片輔助之電極加熱裝置,透過兩種獨立的加熱機制,目的是以此系統成長高品質的石墨烯(Graphene),再經由拉曼光譜來初步鑑定石墨烯的品質。石墨烯一般常被應用於訊號放大器與電子開關,由於石墨烯是以單一種元素所構成的碳薄膜材料,厚度達到奈米尺度,除了化學性質穩定之外,還具有獨特的六角晶格結構使其擁有特殊的能帶結構,造就了石墨烯卓越優異的傳輸特性,因此使石墨烯成為一種極具潛力的二維材料。

我們經由熱傳遞效應的估計來設計TPACVD中的電極裝置,選擇適當的加熱載臺,藉由兩種加熱機制的控制來成長石墨烯薄膜,並利用拉曼光譜來初步鑑定薄膜品質,經由參數的調製來達到TPACVD系統最優良的成長條件。而在整個石墨烯製程中,我們透過銅基板的前置處理,有效地去除了石墨烯上的氧化物殘留,大大改善石墨烯樣品的品質。此外,我們認為這套TPACVD系統未來很有機會可以透過裝置改良,來成長其他新興的二維材料,例如MoS2、WS2、WSe2…等等,使TPACVD系統擁有許多發展的潛力空間。
In this work, we develop a new chemical vapor deposition system called the thermal plate-assisted chemical vapor deposition (TPACVD) in our laboratory. This system combine the chemical vapor deposition technique with the thermal plate-assisted installation. Through these two independent heating mechanism, our goal is to grow high-quality graphene with this system. After the TPACVD process is done, we indentify the quality of graphene by means of inspecting the Raman spectroscopy. Graphene is now widely used in signal amplification and electron switches, and it is formed with a carbon thin film which consists of only one element. As a result, the thickness of this film is in nano scale. The chemical property of graphene is very stable, and the unique crystal lattice make it have special electric band structure. This special property of graphene contributes to its excellent transfer characteristic, and make graphene the most promising two-dimensional material.

We design the electrode installation of TPACVD system by estimating the conditions of heat transfer, and choose suitable heating plate for this system. We grow the graphene film by controlling these two heating mechanism, and identify the quality of graphene by means of analyzing the Raman spectroscopy. We systemtically change the setup parameter to achieve the best growth condition for our TPACVD system. During the whole graphene growth process, we do the copper sheet pre-treatment to effectively remove the metallic oxide on the graphene. This way can improve our sample quality. In addition, we consider that it is possible for us to use this TPACVD system to grow other two-dimensional material, such as MoS2、WS2、WSe2……etc, by remodeling it. It makes TPACVD system potentially important for graphene growth in the future.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第零章 緒論 1
第一章 石墨烯導論 3
1-1 石墨烯的介紹 3
1-1-1 石墨烯的晶格結構 3
1-1-2 石墨烯的能帶結構 4
1-1-3 石墨烯的電性與光學特性 7
1-2 石墨烯的製備方法 10
1-3 石墨烯的檢測方法 16
1-3-1光學顯微鏡 16
1-3-2掃描式電子顯微鏡 17
1-3-3拉曼光譜儀 19
第二章 化學氣相沉積法製備石墨烯 25
2-1 CVD系統的原理 25
2-2 CVD製備石墨烯的成長機制 26
2-3 CVD催化金屬基板的選擇 29
2-4 研究動機 32
第三章 TPACVD的設計概念 34
3-1 TPACVD的電阻加熱電極設計 34
3-1-1 TPACVD的電極設計概念 34
3-1-2 TPACVD電極的熱傳遞效應之探討 36
3-2 TPACVD系統的設備配置 42
3-2-1 TPACVD系統的完成設計 42
3-2-2 TPACVD系統的溫度校正 44
3-3 TPACVD加熱載臺的選擇 48
第四章 TPACVD成長石墨烯 54
4-1 TPACVD石墨烯的成長參數 54
4-1-1 調變CVD石墨烯的成長參數 54
4-1-2 TPACVD石墨烯的成長參數之決定 58
4-2 TPACVD石墨烯的製備 59
4-2-1 TPACVD石墨烯製備過程 59
4-2-2 石墨烯的轉移過程 64
4-2-3 改善轉移後石墨烯氧化物的殘留:銅基板的Wet Chemical Pre-treatment 65
4-3 TPACVD成長石墨烯的實驗結果 68
4-3-1 TPACVD成長石墨烯之焦耳加熱電流參數 68
4-3-2 TPACVD石墨烯的成長結果與系統實際溫度探討 71
第五章 總結與未來展望 76
參考文獻 79
附錄A — 銅的熱導係數data base 83
附錄B — TPACVD放置樣品SOP 84
附錄C — TPACVD成長石墨烯SOP 88
附錄D — TPACVD系統設計之模擬草圖 93
附錄E — TPACVD系統設計之細部類項 94
[1]J. Bardeen, W. H. Brattain. “The transistor, a semi-conductor triode.” Physical Review Letters, 1948. Vol.74, 230
[2]P. R. Wallace. “The band theory of graphite.” Physical Review, 1947. Vol.71: p.622-634
[3]Daniel R. Cooper, Benjamin D’Anjou, Nageswara Ghattamaneni, et al. “Experimental review of graphene.” ISRN Condensed Matter Physics, 2012. ID.501686
[4]A. K. Geim, K. S. Novoselov. “The rise of graphene.” Nature Materials, 2007. Vol.6: p.183-191
[5]Kin Fai Mak, Matthew Y. Sfeir, Yang Wu, et al. “Measurement of the optical conductivity of graphene.” Physical Review Letters, 2008. Vol.101(19):196405
[6]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. “Electric field effect in atomically thin carbon films.” Science, 2004. Vol.306: p.666-669
[7]Walt A. de Heer, Claire Berger, Xiaosong Wu, et al. “Epitaxial graphene.” Solid State Communications, 2007. Vol.143: p.92-100
[8]Xiaolin Li, Guangyu Zhang, Xuedong Bai, et al. “Highly conducting graphene sheets and Langmuir-Blodgett films.” Nature Nanorechnology, 2008. Vol.3: p.538-542
[9]J. Wintterlin, M.-L. Bocquet. “Graphene on metal surface.” Surface Science, 2009. Vol.603: p.1841-1852
[10]Xuesong Li, Weiwei Cai, Jinho An, et al. “Large-area synthesis of high-quality and uniform graphene films on copper foils.” Science, 2009. Vol.324: p.1312-1314
[11]Yi Zhang, Luyao Zhang, Chongwu Zhou. “Review of chemical vapor deposition of graphene and related application.” Accounts of Chemical Research, 2013. Vol.46, No.10: p.2329-2339
[12]Toshiyuki Kobayashi, Masashi Bando, Nozomi Kimura, et al. “Production of 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process” Applied Physics Letters, 2013. Vol.102, 023112
[13]R. R. Nair, P. Blake, A. N. Grigorenko, et al. “Fine structure constant defines visual transparency of graphene.” Science, 2008. Vol.320: p.1908
[14]P. Blake, E. W. Hill, A. H. Castro Neto, et al. “Making graphene visible.” Applied Physics Letters, 2007. Vol.91, 063124
[15]Peter F. Bernath. “Spectra of atoms and molecules.” OXFORD, second edition. Chapter. 8
[16]L. M. Malard, M. A. Pimenta, G. Dresselhaus, et al. “Raman spectroscopy in graphene.” Physics Reports, 2009. Vol.473: p.51-87
[17]Congqin Miao, Churan Zheng, Owen Liang, et al. “Chemical Vapor Deposition of Graphene.” Physics and Application of Graohene – Experiment, book edited by Sergey Mikhailov. Chapter.3
[18]Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio, et al. “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene.” ACS Nano, 2011. Vol.5, No.7: p.6069-6079
[19]Wenhua Zhang, Ping Wu, Zhenyu Li, et al. “First-principles thermodynamics of graphene growth on Cu surfaces.” The Journal of Physical Chemistry, 2011. Vol.115: p.17782-17787
[20]T. B. Massalski. “Bibary alloy phase diagrams.” ASM International, second edition, 1990
[21]Qingkai Tu, Lie Lian, Sujitra Siriponglert, et al. “Graphene segregated on Ni surfaces and transferred to insulators.” Applied Physics Letters, 2008. Vol.93, 113103
[22]Choon-Ming Seah, Siang-Piao Chai, Abdul Rahman Mohamed. “Mechanism of graphene growth by chemical vapour deposition on transition metals.” Carbon, 2014. Vol.70: p.1-21
[23]ASM Handbook, ASM International. Volume 03 - Alloy Phase Diagrams, 1993.
[24]Yi Zhang, Lewis Gomez, Fumiaki N, et al. “Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition.” The Journal of Physical Chemistry Letters, 2010. Vol.1: p.3101-3107
[25]Cecilia Mattevi, Hokwon Kim, Manish Chhowalla. “A review of chemical vapour deposition of graphene on copper.” Journal of Materials Chemistry, 2011. Vol.21: p.3324-3334
[26]Wei Liu, Hong Li, Chuan Xu, et al. “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition.” Carbon, 2011. Vol.49: p.4122-4130
[27]Dong Soo Choi, Keun Soo Kim, Hyeongkeun Kim, et al. “Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.” ACS Applied Materials and Interfaces, 2014. Vol.6: p.19574-19578
[28]Ajjiporn Dathbun, Sutichai Chaisitsak. “Effects of three parameters on graphene synthesis by chemical vapor deposition.” Nano/Micro Engineered and Molecular Systems, 2013. April 7-10, p.1018-1021
[29]Vo Van Hoang. “Cooling rate effects on structure of amorphous graphene.” Physica B, 2015. Vol.456: p.50-56
[30]C. C. Huang, T. H. Chang, N. C. Chen, et al. “Generating electron cyclotron resonance plasma using distributed scheme.” Applied Physics Letters, 2012. Vol.101, 062414
[31]T. H. Chang, N. C. Chen, H. W. Chao, et al. “Generating large-area uniform microwave field for plasma excitation.” Physics of Plasmas, 2012. Vol.19, 033302
[32]C. C. Huang, S. F. Chou, T. H. Chang, et al. “Effect of magnetic field profile on the uniformity of a distributed electron cyclotron resonance plasma.” Physics of Plasmas, 2013. Vol.20, 073504
[33]Frank P. Incropera, David P Dewitt. “Fundamentals of Heat and Mass Transfer.” Wiley, second edition, 1985. Chapter.3
[34]Reference: Brookhaven National laboratory database
[35]Ying Wu Liu. “The fabrication and characterization of chemical vapor deposited graphene.” NTHU, 2012.
[36]Xuesong Li, Yanwu Zhu, WeiWei Cai, et al. “Transfer of large-area graphene films for high-performance transparent conductive electrodes.” Nano Letters, 2009. Vol.9, p.4359-4363
[37]Saptarshi Das, Joshua A, Robinson, et al. “Beyond graphene: Progress in novel two-dimensional materials and van der waals solids.” Rev. Matter. Res, 2015. Vol.45, p.1-27
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *