帳號:guest(3.15.29.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李哲瑩
作者(外文):Lee, Che Ying
論文名稱(中文):外爾半金屬砷化鉭手徵異常及熱電性質的研究
論文名稱(外文):Chiral Anomaly and Thermoelectric Properties of Weyl Semimetal TaAs
指導教授(中文):牟中瑜
陳洋元
指導教授(外文):Mou, Chung Yu
Chen, Yang Yuan
口試委員(中文):陳正中
仲崇厚
口試委員(外文):Chen, Jeng Chung
Chung, Chung Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022524
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:59
中文關鍵詞:半金屬砷化鉭外爾半金屬熱電
外文關鍵詞:Weyl semimetalTaAsthermoelectricchiral anomaly
相關次數:
  • 推薦推薦:0
  • 點閱點閱:170
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
外爾半金屬是一種特別的晶體,其中外爾費米子為準粒子並以表面有費米弧為特徵,一個狄拉克點由兩個相反手徵的外爾點組成,外爾點的行為類似於貝瑞曲率描述的磁單極,根據量子磁場理論,與手徵異常有關的新穎電子傳輸現象是由出現在費米能階旁邊的外爾點所造成,這可以理解為給定手徵粒子數不守恆的原因,此不守恆現象只出現在電場(電流)方向與磁場方向平行時。本論文針對外爾半金屬TaAa的物理性質作深入研究,X光粉末繞射儀的量測結果顯示單晶TaAs的晶面垂直於晶軸c軸方向,以物理性質量測系統(PPMS)測量的電性傳輸結果顯示,由時間反轉對稱保護的外爾半金屬TaAs,在零磁場的環境中,隨溫度變化的電阻率表示TaAs為金屬性,而後,當磁場從0T增加到9T,TaAs的電性也隨之由金屬轉換成絕緣體。此報告中展示與磁場有關的席貝克係數量測結果,席貝克係數在磁場方向平行和垂直溫度梯度方向時有著明顯的差異,一般而言,席貝克係數在磁場下的行為與磁阻相似,在小磁場時,兩者皆有反若局域效應,磁阻及席貝克係數皆隨磁場增加而增加。當磁場方向由平行(B∥∇T)轉為垂直(B⊥∇T)溫度梯度方向時,席貝克係數由- 1.5μV/K增加至- 13μV/K,其中的負號顯示TaAs為p型的外爾半金屬。
A Weyl semimetal is a kind of special crystal which has Weyl fermions and exhibits Fermi arcs on its surface. A Dirac point is composed of two Weyl nodes which have opposite chirality, and act as magnetic monopoles. Based on the quantum field theory, the emergence of Weyl nodes near the Fermi level induces novel transport phenomena related to chiral anomaly, which can be understood as the non-conservation of the particle number with given chirality. The anomaly shows up only when the magnetic field is parallel to the electric field. In this work we studied the physical properties of TaAs Weyl semimetal. The crystallographic c-axis which is perpendicular to the surface of TaAs single crystal is confirmed by the result of XRD. The transport properties of TaAs is measured by the physical properties measurement system (PPMS). The temperature dependence of resistivity demonstrates that TaAs is metallic at zero magnetic field, and it then changes from metal to insulator when magnetic field increases form 0 tesla to 9 tesla. The measurement results present evidences that the negative magneto-resistance is generated by the chiral anomaly in a predicted time reversal symmetry in Weyl semimetal TaAs. In the measurements of magnetic field dependence of Seebeck coefficient, the difference of magneto-Seebeck is observed when magnetic field is parallel and perpendicular to the temperature gradient. In general, the behavior of Seebeck coefficient is similar to that of magneto-resistance. At low magnetic field, the Seebeck coefficient and magneto-resistance show weak anti-localization behavior, both increase as magnetic field rises. When the direction of magnetic field changes from parallel ( B∥T) to perpendicular (B⊥T) with respect to the temperature gradient, the magnitude of Seebeck coefficient increases from -1.5 to -13μV/K, whereas the negative sign represents TaAs is p - type Weyl semimetal.
摘要 i
Abstract ii
致謝 iv
Outline v
Figure Outline vi
Table Outline viii
I. Introduction 1
II. The Weyl Semimetal and the Chiral anomaly 6
2.1 Landau Level 6
2.2 Dirac Fermion 8
2.3 Weyl Fermion 10
2.4 Chiral Anomaly 11
2.5 Fermi Arc 14
2.3 TaAs properties 15
III. Thermoelectric properties 19
IV. Experimental setup 27
4.1 X-ray diffraction (XRD) 27
4.2 Physical properties measurement system (PPMS) 30
4.3 Thermocouple 33
4.4 Experimental setup 35
V. Result 41
5.1 XRD properties of TaAs 41
5.2 Transport properties of TaAs 42
5.3 Thermoelectric properties of TaAs 49
VI. Discussion 53
Reference 55

[1] Su-Yang Xu, Chang Liu, Satya K. Kushwaha, Raman Sankar, et al., Observation of Fermi arc surface states in a topological metal, Science 347, 294 (2015)
[2] Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Guang Bian,1 Chenglong Zhang, et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349, 613 (2015)
[3] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, et al., Experimental Discovery of Weyl Semimetal TaAs, Phys. Rev. X 5, 031013 (2015)
[4] Shengyuan A. Yang, Hui Pan, and Fan Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett 115, 156603 (2015)
[5] Alexander A. Zyuzin and Vladimir A. Zyuzin, Chiral electromagnetic waves in Weyl semimetals, Phys. Rev. B 92, 115310 (2015)
[6] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Dirac semimetals A3Bi (A = Na,K,Rb) as Z2 Weyl semimetals, Phys. Rev. B 91, 121101(R) (2015)
[7] Hai-Zhou Lu and Shun-Qing Shen, Weak anti-localization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B 92, 035203 (2015)
[8] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Surface Fermi arcs in Z2 Weyl semimetals A3Bi (A=Na, K, Rb), Phys. Rev. B 91, 235138 (2015)
[9] H. W. Liu, P. Richard, Z. D. Song, L. X. Zhao, et al., Raman study of lattice dynamics in the Weyl semimetal TaAs, Phys. Rev. B 92, 064302 (2015)
[10] Yan Sun, Shu-Chun Wu, Mazhar N. Ali, Claudia Felser, and Binghai Yan, Prediction of Weyl semimetal in orthorhombic MoTe2 , Phys. Rev. B 92, 161107(R) (2015)
[11] Xiaochun Huang, Lingxiao Zhao, Yujia Long, and Peipei Wang, et al., Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev X 5, 031023 (2015)
[12] Rex Lundgren, Pontus Laurell, and Gregory A. Fiete. Thermoelectric properties of Weyl and Dirac semimetals, Phys. Rev B 90, 165115 (2014)
[13] Shin-Ming Huang, Su-Yang Xu, Ilya Belopolski, Chi-Cheng Lee, et al., A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)
[14] B Wunsch, F Guinea and F Sols, Dirac-point engineering and topological phase transitions in honeycomb optical lattices, New Journal of Physics 10, 103027 (2008)
[15] Cheng-Long Zhang, Su-Yang Xu, Ilya Belopolski, et al., Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)
[16] Ilya Belopolski, Su-Yang Xu, Daniel S. Sanchez, Guoqing Chang, et al, Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals, Phys. Rev. Lett 116, 066802 (2016)
[17] A. A. Burkov and L. Balents, Weyl Semimetal in a Topological Insulator Multilayer, Phys. Rev. Lett. 107, 127205 (2011).
[18] X.Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).
[19] G. Y. Cho, Possible topological phases of bulk magnetically doped Bi2Se3: turning a topological band insulator into Weyl semimetal, arXiv:1110.1939.
[20] F. D. M. Haldane, Attachment of Surface “Fermi Arcs” to the Bulk Fermi Surface: “Fermi-Level Plumbing” in Topological Metals, arXiv:1401.0529.
[21] H.-J. Kim, K.-S. Kim, J. F. Wang, M. Sasaki, et al, Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena, Phys. Rev. Lett. 111, 246603 (2013).
[22] J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, et al, Landau level splitting in Cd3As2 under high magnetic fields, arXiv:1412.0824.
[23] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, et al, Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys. 11, 728 (2015).
[24] Larry L. Sparks and Robert L. Powell, Low temperature thermocouples: KP, “normal ” silver, and copper versus Au-0.02 at% Fe and Au-0.07 at% Fe, A Physics and Chemistry 76A, 3 (1972)
[25] Yeh, chao-chen, Thermoelectric Properties of Weyl semimetals, thesis of master degree, National Tsing-Hua University, Hsinchu, Taiwan (2016).
[26] Gorbar, E. V., Miransky, V. A., Shovkovy, I. A, et al, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B 93, 23 (2016)
[27] G. Xu, H. M. Weng, Z. Wang, X. Dai, and Z. Fang, Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011).
[28] D. T. Son and B. Z. Spivak, Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals, Phys. Rev. B 88, 104412 (2013).
[29] H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw Anomaly and Weyl Fermions in a Crystal, Phys. Lett. 130B, 389 (1983).
[30] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals, Phys. Rev. X 4, 031035 (2014).
[31] K. Fukushima, D. Kharzeev, and H. Warringa, Chiral Magnetic Effect, Phys. Rev. D 78, 074033 (2008).
[32] A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum Oscillations from Surface Fermi Arcs in Weyl and Dirac Semimetals, Nat. Commun. 5, 5161 (2014).
[33] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac Semimetal in Three Dimensions, Phys. Rev. Lett. 108, 140405 (2012).
[34] Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, Dirac Semimetal and Topological Phase Transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B 85, 195320 (2012).
[35] Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2, Phys. Rev. B 88, 125427 (2013).
[36] B. J. Yang and N. Nagaosa, Classification of Stable Three-Dimensional Dirac Semimetals with Nontrivial Topology, Nat. Commun. 5, 4898 (2014).
[37] S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman and I. Kimchi, et al, Landau Quantization and Quasiparticle Interference in the Three-Dimensional Dirac Semimetal Cd3As2, Nat. Mater. 13, 851 (2014).
[38] Neil W. Ashcroft, N. David Mermin, Solid State Physics (1976)
[39] T. S. Hsiung, D. Y. Chen, L Zhao, Y H Lin, C. Y. Mou, et al, Enhanced surface mobility and quantum oscillations in topological insulator Bi1.5Sb0.5Te1.7Se1.3 nanoflakes Appl. Phys. Lett. 103 163111 (2013)
[40] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-Phase Effect in Anomalous Thermoelectric Transport, Phys. Rev. Lett. 97, 026603 (2006).
[41] T. Qin, Q. Niu, and J. Shi, Energy Magnetization and the Thermal Hall Effect, Phys. Rev. Lett. 107, 236601 (2011).
[42] G. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).
[43] B. A. Bernevig and S.-C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett. 96, 106802 (2006).
[44] S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase, New Journal of Physics 9, 356 (2007).
[45] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
[46] K. S. Kim, H. J. Kim, and M. Sasaki, Boltzmann-equation approach to anomalous transport in a Weyl metal, Phys. Rev. B 89, 195137 (2014).
[47] S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, et al, Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator, Science 332, 560 (2011).
[48] M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topological-Metal to Band-Insulator Transition in (Bi1−xInx)2Se3 Thin Films, Phys. Rev. Lett. 109, 186403 (2012).
[49] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Engineering Weyl nodes in Dirac semimetals by a magnetic field, Phys. Rev. B 88, 165105 (2013).
[50] G. B. Halasz and L. Balents, Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B 85, 035103 (2012).
[51] A. A. Zyuzin, S.Wu, and A. A. Burkov, Weyl semimetal with broken time reversal and inversion symmetries, Phys. Rev. B 85, 165110 (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *