帳號:guest(3.142.252.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王淳㚢
作者(外文):Wang, Chun-Ju
論文名稱(中文):探討碘分子超精細譜線在548奈米附近的基曼效應
論文名稱(外文):Investigation of Zeeman Effect of Molecular Iodine Hyperfine Transitions at 548 nm
指導教授(中文):王立邦
指導教授(外文):Wang, Li-Bang
口試委員(中文):施宙聰
鄭王曜
口試委員(外文):Shy, Jow-Tsong
Cheng, Wang-Yau
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022517
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:48
中文關鍵詞:飽和吸收光譜基曼效應碘分子超精細結構
外文關鍵詞:Saturation SpectroscopyZeeman EffectMolecular IodineHyperfine Structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
  在許多實驗中,碘穩頻系統常用來作為雷射光頻率的標準。然而,量測碘分子的躍遷頻率時,大多數未考慮地磁對其頻率的影響。到目前為止,磁場對碘分子光譜影響的研究數量不多,主要因為碘分子對於磁場的敏感度較低。而引起碘分子光譜變化的原因在於不同量子態的 g值會有些許不同,導致因磁場產生的基曼分裂能量差不同,因此不同量子態基曼能階間的躍遷頻率會有些許偏離。

  在我們的實驗中,觀察127I2 R(136)27-0、R(86)25-0、P(28)24-0及R(32)24-0超精細譜線在磁場下的變化,並量測其a10譜線的線寬,藉由勞倫茲曲線函數的線性疊加擬合出激發態與基態間的 g_F值差,在不同磁場下的平均值分別為0.0935、0.0765、0.0617及0.0571。雖然磁場對碘分子光譜在548.5奈米的影響目前無人探討,但得到的數值可合理解釋並預測譜線的變化。在未來,我們將量測其他譜線在磁場下的變化,並外加更多不同的磁場大小,以得到更精確的數值。
  In many experiments, the iodine-stabilized laser system serves as an optical frequency standard. However, the geomagnetic field is usually not taken into consideration when measuring frequencies of molecular iodine hyperfine transitions. Up to now, the research on how the magnetic field affects absorption spectra of I2 hyperfine transitions is very limited because I2 is not sensitive to the magnetic field. The reason why spectra changes under the magnetic field is the difference in g-factor for different energy levels. As a result, each transition between Zeeman sublevels will exhibit different Zeeman shift.

  In our experiment, the absorption spectra of 127I2 R(136) 27-0, R(86) 25-0, P(28) 24-0 and R(32) 24-0 hyperfine transitions are observed, and the linewidth of a10-lines is measured. By the superposition of several Lorentzian profiles, the difference of g_F-factors between the excited and ground state is calculated, and the average values of that under different magnetic fields are 0.0935, 0.0765, 0.0617 and 0.0571 respectively. Although the effect of the magnetic field on 127I2 hyperfine transitions at 548.5 nm is not theoretically investigated, the observed spectra can be reasonably explained and expected by the difference of g_F-factor obtained. In the future, more 127I2 hyperfine transitions under different magnetic fields can be investigated and better–controlled magnetic fields can be applied to get more precise g_F-factors.
Contents
1. Introduction
1.1 Motivation
1.2 Molecular Iodine
2. Theory
2.1 Hyperfine Spectra of Molecular Iodine
2.2 Zeeman Effect
2.3 Saturation Spectroscopy
3. Experiment
3.1 Light Source and Frequency Stabilization
3.2 Hyperfine Transition of Molecular Iodine
3.3 Magnetic Field and Polarization Variation
4. Results and Discussion
4.1 Data Analysis
4.2 Zeeman Splitting of I2 Hyperfine Spectra
4.3 Polarization Dependence on Pump beam
5. Conclusion
6. Bibliography
1. Felder, R., INTERNATIONAL REPORT: Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003). Metrologia, 2005. 42: p. 323-325.
2. Hsiao, Y.-C., C.-Y. Kao, H.-C. Chen, S.-E. Chen, J.-L. Peng, and L.-B. Wang, Absolute frequency measurement of the molecular iodine hyperfine transitions at 548 nm. JOSA B, 2013. 30(2): p. 328-332.
3. van Wijngaarden, W. and G. Noble, Precision Laser Spectroscopy of Li+ and Neutral Lithium, in Precision Physics of Simple Atoms and Molecules. 2008, Springer. p. 111-129.
4. Riis, E., A. Sinclair, O. Poulsen, G.W. Drake, W. Rowley, and A. Levick, Lamb shifts and hyperfine structure in Li+ 6 and Li+ 7: Theory and experiment. Physical review A, 1994. 49(1): p. 207.
5. Goncharov, A., S. Gateva-Kosteva, M. Skvortsov, and V. Chebotayev, Direct observation of the anomalous zeeman effect at the X→ B transition of molecular iodine by the method of nonlinear laser spectroscopy. Applied Physics B, 1991. 52(4): p. 311-314.
6. Cheng, W.-Y., C.Y. Hu, and J.-T. Shy, Portable 543 nm length standard and magnetic-induced zero-crossing shift on length standard transition. Review of Scientific Instruments, 2005. 76(5): p. 053110.
7. Gerstenkorn, S. and P. Luc, Atlas Du Spectre D'absorption de la Molécule D'iode, 14800-20000 Cm-1. 1978: Centre national de la recherche scientifique.
8. Cheng, W.-Y., L. Chen, T.H. Yoon, J.L. Hall, and J. Ye, Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm). Optics letters, 2002. 27(8): p. 571-573.
9. Herzberg, G., Spectra of diatomic molecules. 1950: Van Nostrand.
10. Gerstenkom, S. and P. Luc, Description of the absorption spectrum of iodine recorded by means of Fourier Transform Spectroscopy : the (B-X) system. Journal de Physique, 1985. 46(6): p. 867-881.
11. Fredin-Picard, S., On the Hyperfine Structure of Iodine. Rapport BIPM-90/5.
12. Razet, A. and S. Picard, A tabulation of calculations of the hyperfine structure in 127I2. Metrologia, 1996. 33(1): p. 19.
13. Foth, H.-J. and F. Spieweck, Hyperfine structure of the R (98), 58-1 line of 127I2 at 514.5 nm. Chemical Physics Letters, 1979. 65(2): p. 347-352.
14. Hanes, G., J. Lapierre, P. Bunker, and K. Shotton, Nuclear hyperfine structure in the electronic spectrum of 127I2 by saturated absorption spectroscopy, and comparison with theory. Journal of Molecular Spectroscopy, 1971. 39(3): p. 506-515.
15. Bodermann, B., H. Knöckel, and E. Tiemann, Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum. The European Physical Journal D, 2002. 19(1): p. 31-44.
16. http://www.iqo.uni-hannover.de/. Iodine Spec5.
17. Kox, A., The discovery of the electron: II. The Zeeman effect. European Journal of Physics, 1997. 18: p. 139-144.
18. Townes, C.H. and A.L. Schawlow, Microwave Spectroscopy. 2013: Dover Publications.
19. Murakawa, K., Nuclear Moments of Mo95, Mo97, Zr91, I127, Sb121, and Sb123. Physical Review, 1955. 100(5): p. 1369-1372.
20. Broyer, M., J.C. Lehmann, and J. Vigue, g Factors and lifetimes in the B state of molecular iodine. Journal de Physique, 1975. 36(3): p. 235-241.
21. http://webspace.webring.com/people/ra/astrophys0msci/PLAB_-_Ex_8_Zeeman_effect.pdf. Observing the normal Zeeman effect in transverse and longitudinal configuration by Spectroscopy with a Fabry-Perot etalon
22. http://www.phys.ufl.edu/courses/phy4803L/group_III/sat_absorbtion/SatAbs.pdf. Saturated Absrption Spectroscopy.
23. Demtröder, W., Laser spectroscopy: basic concepts and instrumentation. Vol. 3. 2004: Springer.
24. McFarlane, R.A., W.R. Bennett, and W.E. Lamb, SINGLE MODE TUNING DIP IN THE POWER OUTPUT OF AN He‐Ne OPTICAL MASER. Applied Physics Letters, 1963. 2(10): p. 189-190.
25. Lamb Jr, W.E., Theory of an optical maser. Physical Review, 1964. 134(6A): p. A1429.
26. Boyd, R.W., Nonlinear Optics. 2008: Elsevier Science.
27. http://refractiveindex.info/legacy/. RefractiveIndex.Info.
28. Levenson, M. and A. Schawlow, Hyperfine Interactions in Molecular Iodine. Physical Review A, 1972. 6(1): p. 10-20.
29. Steinfeld, J., R. Zare, L. Jones, M. Lesk, and W. Klemperer, Spectroscopic Constants and Vibrational Assignment for the B3Π0u+ State of Iodine. The Journal of Chemical Physics, 2004. 42(1): p. 25-33.
30. Brown, J., R. Buenker, A. Carrington, C. Di Lauro, R. Dixon, R. Field, . . . M. Mehring, Remarks on the signs of g factors in atomic and molecular Zeeman spectroscopy. 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *