帳號:guest(52.14.172.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅弘哲
作者(外文):Fu, Hung Che
論文名稱(中文):微波場中矽晶圓接合之機制研討
論文名稱(外文):Mechanism of Microwave Mediated Silicon Wafer Bonding
指導教授(中文):張存續
指導教授(外文):Chang, Tsun Hsu
口試委員(中文):金重勳
張士欽
彭成鑑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:101022504
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:52
中文關鍵詞:微波矽晶圓接合
外文關鍵詞:microwavewafer bonding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:404
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究的目標是量測接合矽晶片的鍵結力量,比較以微波或傳統加熱兩種方法鍵結的力量差異,藉此來分析微波對材料的影響。矽晶片在以化學方法清潔表面後,會分別在微波系統或傳統加熱爐以同樣溫度加熱相同時間達成鍵結。微波系統是採取單模式的加熱腔體以精確地控制電場的分布以及強度。在退火之後矽晶片會以拉力測試或其他輔助性的分析方法來進行分析。
實驗結果顯示以傳統加熱來進行接合的樣品,其接合狀態及鍵結力量是與退火溫度及表面處理狀態高度相關。另一方面,以微波加熱來鍵結的樣品具有十分穩定的結果,此結果與退火溫度高度相關,卻與表面處理的狀態沒有太大的關係。在強度的量測上,兩種加熱方法的樣品一旦成功鍵結,其鍵結強度皆會提升到非常高,但微波加熱可以在較低的溫度下達到此種狀態。除此之外,微波加熱的樣品表面會產生獨特的樹枝狀結構,可能是由表面的粒子擴散所造成。這個現象也可能造成鍵結強度的差異。

The purpose of this study is trying to systematically analyze the difference between microwave and conventional annealing by measuring the bonding strength of samples prepared in each way. Silicon wafers are treated by microwave and conventional annealing at the same time and temperature right after surface processing. Single mode applicator is used here for precisely control the electric field profile and intensity. After that both group of wafers will be measured their bonding strength by tensile test along with other supportive analysis.
As a result, the performance of silicon bonding by conventional furnace was highly dependent on both temperature and the surface cleanness. On the other hand, the microwave group has consistent bonding result strongly depending just on temperature, and surface condition has nearly no influence in this case. For bonding strength measurement, both groups showed that once it was bonded successfully, the strength could be very strong. But microwave group can attain the high bonding strength at lower temperature. Apart from that, the microwave group has unique branch-like patterns on the bonding interface, which might indicates movement of diffusing charge particle. It might be related to the difference in bonding strength between the groups.
Chapter 1 Introduction and Motivation 1
Chapter 2 Literature review 4
2-1 Development and Applications of Microwave process 4
2-2 Resonant Mode in the Cavity 7
2-3 Progress of Silicon Wafer Direct Bonding 9
Chapter 3 Experimental Designs 15
3-1 Experimental Procedures 15
3-1-1 Experiment Overview 15
3-1-2 Pre-annealing Settings 16
3-1-3 Annealing Procedures 18
3-1-4 Tensile Test 20
3-2 Experiment instruments 22
Chapter 4 Results and Discussion 31
4-1 Scanning Acoustic Tomography 31
4-2 TEM/EDS 33
4-3 X-Ray Diffraction 36
4-4 Bonding Strength Measurement 38
4-4-1 Successful Rate 38
4-4-2 Tensile Test Results 42
4-5 Branch-like Pattern 45
Chapter 5 Summary 47
Reference 49
[1] S. C. Fong, C. Y. Wang, T. H. Chang, and T. S. Chin, "Crystallization of amorphous Si film with SiC susceptor by microwave annealing", Appl. Phys. Lett. 94, 102-104 (2009).

[2] Snyder Jr WB, Sutton WH, lskander MF, Johnson DL (Eds), "Microwave Processing of Materials II", Pittsburgh, USA MRS, Materials Research Society Proceedings, Vol. 189 (1990).

[3] Beatty RL, Sutton WH, lskander MF (Eds), "Microwave Processing of Materials III", Pittsburgh, USA MRS, Materials Research Society Proceedings, Vol. 269 (1992).

[4] Clark DE, Tinga WR, Laia JR Jr (Eds), "Microwaves : Theory and Applications in Materials Processing II", Westervllle, Ohio, The American Ceramic Society (1993).

[5] David E. Clark , Diane C. Folz, Jon K. West, "Processing materials with microwave energy", Materials Science and Engineering, A287, pp. 153-158 (2000).

[6] C. Zhao, J. Vleugels, C. Groffils, P. J. Luypaert, O. Van Der Biest, "Hybrid sintering with a tubular susceptor in a cylindrical single-mode microwave furnace", ActaMaterialia, Vol. 48, issue 14, pp. 37-95 (2000).

[7] S. A. Nightingale, H. K. Worner, and D. P. Dunne, "Microstructural Developement during the Microwave Sintering of Yttria-Zirconia Ceramics,” J. Am. Ceram. Soc., vol. 80, pp. 394-400 (1997).

[8] C. Y. Tsay, K. S. Liu, I.N. Lin,"Co-firing process using conventional and microwave sintering technologies for MnZn- and NiZn-ferrites", Journal of the European Ceramic Society 21, pp.1937–1940 (2001).

[9] J. Cheng, D. Agrawal, Y Zhang and R. Roy, "Development of Translucent Aluminum Nitride (AIN) Using Microwave Sintering Process ," Journal of Electroceramics, vol. 9, pp.67–71 (2002).

[10] Y. Fang, Y. Chen, M. R. Silsbee, D. M. Roy, "Microwave sintering of flyash", Materials Letters 27,pp.155-159 (1996).

[11] T.L. Alford, T. Tang, D.C. Thompson, S. Bhagat, J.W. Mayer, "Influence of microwave annealing on direct bonded silicon wafers", Thin Solid Films, Volume 516, Issue 8, pp. 2158-2161 (2008).

[12] Joel D. Katz, "Microwave Sintering of Ceramics", Annual Review of Materials Science, vol. 22, pp.153-170 (1992).

[13] T. H. Chang, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin, "Efficient heating with a controlled microwave field", Review of Scientific Instruments, Vol. 82, no. 12 (2011).

[14] Christiansen, S.H., Singh, R., Gösele, Ulrich, "Wafer Direct Bonding: From Advanced Substrate Engineering to Future Applications in Micro/Nanoelectronics", Proceedings of the IEEE , vol.94, no.12, pp.2060-2106 (2006).

[15] U. Gösele, Q.Y. Tong, A. Schumacher, G. Kräuter, M. Reiche, A. Plößl, P. Kopperschmidt, T.-H. Lee, W.-J. Kim, "Wafer bonding for microsystems technologies", Sensors and Actuators A: Physical, vol. 74, Issues 1–3, pp.161-168 (1999).

[16] T. Hattori, K. Takase, H. Yamagishi, R. Sugino, Y. Nara, and T. Ito, "Chemical structures of native oxides formed during wet chemical treatments", Jpn. J. Appl.Phys., vol. 28, no. 2, pp. L296–L298 (1989).

[17] Q. Y. Tong, U. Gösele, "Semiconductor wafer bonding: recent developments, Materials Chemistry and Physics", vol. 37, Issue 2, pp. 101-127 (1994).

[18] X. X. Zhang, Raskin, J.P., "Low-temperature wafer bonding: a study of void formation and influence on bonding strength", Journal of Microelectromechanical Systems , vol.14, no.2, pp.368,382 (2005).

[19] Andreas Plößl, Gertrud Kräuter, "Wafer direct bonding: tailoring adhesion between brittle materials", Materials Science and Engineering: R: Reports, Volume 25, Issues 1–2, pp. 1-88 (1999).

[20] Liguo Chen; Tao Chen, Lining Sun, "Measurement Method of Bond Strength for Silicon Direct Wafer Bonding", Information Acquisition, 2006 IEEE International Conference , pp.1021,1025, 20-23 (2006).

[21] T. Martini, J. Steinkirchner, and U. Gösele. "The Crack Opening Method in Silicon Wafer Bonding: How Useful Is It?", Journal of The Electrochemical Society 144(1), pp. 354-357 (1997).

[22] Takao Abe, Tokio Takei1, Atsuo Uchiyama1, Katsuo Yoshizawa1 and Yasuaki Nakazato. "Silicon Wafer Bonding Mechanism for Silicon-on-Insulator Structures", Japanese Journal of Applied Physics 29 L2311 (1990).

[23] Itano, M.; Kern, F.W., Jr.; Miyashita, M.; Ohmi, T., "Particle removal from silicon wafer surface in wet cleaning process", Semiconductor Manufacturing, IEEE Transactions, vol.6, no.3, pp.258-267 (1993).

[24] B.T. Khuri-Yakub, "Scanning acoustic microscopy ", Ultrasonics, Volume 31, Issue 5, Pages 361-372 (1993).

[25] K. Mitani and U. Gosele, "Formation of interface bubbles in bonded silicon wafers: A thermodynamic model ", Appl. Phys. A, vol. 54, no. 6, pp. 543–552 (1992).

[26] Muller, B. and A. Stoffel. "Tensile strength characterization of low-temperature fusion-bonded silicon wafers", Journal of Micromechanics and Microengineering 1, pp.161-166 (1991).

[27] Gudrun Kissinger, Wolfgang Kissinger, "Void-free silicon-wafer-bond strengthening in the 200–400 °C range ", Sensors and Actuators A: Physical, Volume 36, Issue 2, Pages 149-156 (1993).

[28] S. C. Fong, H. W. Chao, T. H. Chang, H. J. Leu, I. S. Tsai, S. Y. Cheng, C. Y. Wang, T. S. Chin, "Microwave-crystallization of amorphous silicon film using carbon-overcoat as susceptor", Thin Solid Films 519, pp. 4196-4200 (2011).

[29]Wen, W. and K. Lu. "Electric-field-induced diffusion-limited aggregation." Physical Review E 55(3), pp. R2100-R2103 (1997).

[30] O.Warschkow , et al. "Acetone on silicon (001): ambiphilic molecule meets ambiphilic surface." Physical Chemistry Chemical Physics 11(15), pp. 2747-2759 (2009).

[31] Thompson, K.; Gianchandani, Y.B.; Booske, J.; Cooper, Reid F., "Direct silicon-silicon bonding by electromagnetic induction heating", Journal of Microelectromechanical Systems, vol.11, no.4, pp.285-292 (2002).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *