|
References [AF03] Robert A. Adams and John J.F. Fournier. Sobolev spaces. Academic Press, second edition, 2003. [BLP78] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic anal- ysis for periodic structures. AMS Chelsea Publishing, Providence, RI, 1978. [BS08] Susanne C. Brenner and L.Ridgway Scott. The mathematical theory of the finite element methods. Springer, 2008. [Cav02] Albo Carlos Cavalheiro. An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc. (2), 45:363– 389, 2002. [Def93] Anneliese. Defranceschi. An introduction to homogenization and g-convergence. Technical report, ICTP, September 1993. [FKS82] E. Fabes, C. Kenig, and R. Serapioni. The local regularity of so- lutions of degenerate elliptic equations. Communication in PDEs, 7(1):77–116, 1982. [GT77] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1977. [GU09] V. Gol’dshtein and A. Ukhlov. Weighted sobolev space and embed- ding theorems. Transactions of the American Mathematical Society, 361(7):3829–3850, 2009. [Kuf85] Alois. Kufner. weighted Sobolev Spaces. A Wiley-Interscience Pub- lication. John Wiley & Sons, Inc., New York, 1985. 26 [PS08] Grigorios A. Pavliotis and Andrew M. Stuart. Multiscale Methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. [To¨l12] Jonas M. To¨lle. Uniqueness of weighted sobolev spaces with weakly differentiable weights. Journal of Functional Analysis, 263(10):3195–3223, 2012.
|