帳號:guest(18.225.92.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許永政
論文名稱(中文):加速器引發中子產率與物質活化之評估技術研究
論文名稱(外文):Accelerator Induced Neutron Yields and Material Activation
指導教授(中文):許榮鈞
口試委員(中文):江祥輝
薛燕婉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:101013503
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:122
中文關鍵詞:加速器中子產生物質活化蒙地卡羅
外文關鍵詞:Acceleratorsneutron yieldactivationMonte Carlo
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
近年來國內加速器的應用蓬勃發展,高能加速器運轉時不可避免的會產生物質活化及其相關輻射防護問題,這些問題以前國內較少獨立探討及深入研究,為了因應國內越來越多的大型加速器應用,瞭解並建立正確的評估能力已是相當重要的議題。
本研究首先利用一系列有相對可靠實驗數據支持的活化案例,盡可能採用不同計算程式與不同理論模型,以有系統的方式驗證蒙地卡羅遷移程式用在計算中子產生與物質活化的模擬能力,並以驗證過之模型建立四種射束(30 MeV質子、3 GeV電子、235 MeV質子、400 MeV/A碳離子)與不同靶材作用產生中子與物質活化情形的評估模式。本研究以有系統地分析射束-靶體(銅、不銹鋼、組織)組合特性,嘗試建立合理簡化的關係,並連結加速器組件活化程度與眾多因子間的影響程度,期望能做為建置高能加速器時屏蔽設計之參考。
除此之外本研究選定日本京都大學CBNS設施屏蔽做為實際分析案例,在針對中子產生來源的Be(p,xn)反應與文獻結果驗證後,利用MCNPX與FLUKA計算CBNS與清華大學設計之濾屏出口中子束特性,檢驗兩種程式計算中子射源項之結果。最後本研究模擬兩種不同濾屏設計在CBNS設施幾何環境下運轉時的劑量分布情形,並對於屏蔽效果不足之區域提出改善方案。
摘要 i
致謝 ii
目錄 iii
表目錄 vi
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 加速器引發中子產生與物質活化的機制 2
1.3 蒙地卡羅方法簡介 4
1.4 蒙地卡羅方法用於活化問題計算 5
第二章 研究架構與計算程式介紹 7
2.1 研究目的與架構 7
2.2 FLUKA 8
2.3 MCNPX 11
2.4 本研究中各角度中子能譜計算幾何模型 11
第三章 加速器引發中子產生與物質活化驗證計算 13
3.1 中子產率驗證計算 13
3.2 散裂產物產生的反應截面 16
3.3 高能電子引發活化核種飽和活度 19
3.4 核種殘存活性與殘存劑量 21
3.4.1 核種殘存活性 22
3.4.2 殘存劑量 24
第四章 重荷電粒子布拉格曲線 26
4.1 布拉格曲線驗證計算 27
4.1.1 布拉格曲線絕對值驗證 27
4.1.2 二次粒子追蹤對布拉格曲線計算的影響 29
4.1.3 核子模型對於布拉格曲線計算的影響 30
4.1.4 布拉格曲線相對劑量驗證 32
4.2 重荷電粒子治療加速器之輸出估計 33
第五章 加速器引發中子產生與物質活化案例分析(銅靶) 35
5.1 射束撞擊銅靶引發中子產率 35
5.2 銅靶內活化核種種類與活度 43
5.3 銅靶活化核種與中子產生的關聯 54
5.4 銅靶周邊活化光子劑量率 56
5.5 銅靶內比活度分布與豁免管制量 58
第六章 不同加速粒子與靶材組合的中子產率與活化分析 64
6.1 中子產率(四種加速粒子與三種靶材) 64
6.1.1 總中子產率 64
6.1.2 中子能譜 65
6.2 銅與不銹鋼靶材活化的比較(四種加速粒子) 72
6.2.1 活化核種種類與活度 72
6.2.2 物質活化與中子產生的關聯 84
6.2.3 靶周邊活化光子劑量率 88
6.3 軟組織的活化分析(235 MeV質子與400 MeV/A碳離子) 90
6.3.1 活化核種種類 90
6.3.2 核種活度與活化光子劑量率(單次30分鐘連續照射) 91
6.3.3 核種活度與活化光子劑量率(1分鐘連續照射與分次照射情形) 95
第七章 AB-BNCT屏蔽設計與分析 98
7.1 質子撞擊鈹靶引發中子產率驗證計算 98
7.2 活化光子劑量率驗證計算 101
7.3 京都大學CBNS設施屏蔽案例分析 105
7.3.1 加速器設施簡介 105
7.3.2 通過濾屏後中子射源項比較 106
7.3.3 設施輻射場分布情形 110
7.3.4 設施屏蔽改進方案 112
第八章 結論與未來工作 115
參考文獻 117
附錄:子核活度隨時間變化推導過程 120
Agosteo S. Radiation protection constraints for use of proton and ion accelerators in medicine. Radiation protection dosimetry 137: 167-186; 2009.
Agosteo S, Nakamura T, Silari M, Zajacova Z. Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets. Nuclear Instruments and Methods in Physics Research Section B 217: 221-236; 2004.
Ballarini F, Battistoni G, Cerutti F, Empl A, Fassò A, Ferrari A, Gadioli E, Garzelli MV, Ottolenghi A, Pinsky LS, Ranft J, Roesler S, Sala PR, Smirnov G. Nuclear models in FLUKA: Present capabilities, open problems, and future improvements. International Conference on Nuclear Data for Science and Technology; 2004.
Bock RK, Vasilescu A. The particle detector briefbook. Springer; 1998.
Brugger M, Ferrari A, Roesler S, Ulrici L. Validation of the FLUKA Monte Carlo code for predicting induced radioactivity at high-energy accelerators. Nuclear Instruments and Methods in Physics Research Section A 562: 814-818; 2006.
Brugger M, Khater H, Mayer S, Prinz A, Roesler S, Ulrici L, Vincke H. Benchmark studies of induced radioactivity produced in LHC materials, part I: specific activities. Radiation protection dosimetry 116: 6-11; 2005.
Brugger M, Khater H, Mayer S, Prinz A, Roesler S, Ulrici L, Vincke H. Benchmark studies of induced radioactivity produced in LHC materials, part II: Remanent dose rates. Radiation protection dosimetry 116: 12-15; 2005.
Chen CC. Personal Communication. 2013.
Cossairt JD. Radiation physics for personnel and environmental protection. Fermi National Accelerator Laboratory; 2005.
Daum E. Investigation of ligh ion induced activation cross sections in iron. NEA-INDC(GER) 043: 4; 1997.
EXFOR. Experimental Nuclear Reaction Data [online]. Available at: http://www-nds.iaea.org/exfor/.
Fasso A, Ferrari A, Sala P. Total giant resonance photonuclear cross sections for light nuclei: a database for the FLUKA Monte Carlo transport code. Proc 3rd Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities: 61; 1997.
Fasso A, Ferrari A, Sala PR. Photonuclear reactions in FLUKA: Cross sections and interaction models. In: RC Haight, MB Chadwick, T Kawano, P Talous eds. International Conference on Nuclear Data for Science and Technology, Pts 1 and 2. Melville: Amer Inst Physics; 2005; 1303-1306.
Fasso A, Silari M, Ulrici L. Predicting Induced Radioactivity at High Energy Accelerators. SLAC-PUB-8215; 1999.
Ferrari A, Sala P, Fasso A, Ranft J. FLUKA: a multi-particle transport code, CERN 2005-10. INFN/TC_05/ll, SLACR—773; 2005.
Gunzert-Marx K, Iwase H, Schardt D, Simon R. Secondary beam fragments produced by 200 MeV u− 1 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics 10: 075003; 2008.
Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with C-12 therapy beams. Radiation protection dosimetry 122: 485-487; 2006.
Koning AJ, Rochman D. TENDL-2009: "TALYS-based Evaluated Nuclear Data Library" [online]. Available at: http://www.talys.eu/tendl-2009/.
Kosako T, Nakamura T. Air activation by an electron synchrotron. Health physics 43: 3-12; 1982.
Lee HS, Ban S, Sanami T, Takahashi K, Sato T, Shin K, Chung C. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets. Radiation protection dosimetry 116: 653-657; 2005.
Mashnik SG. Overview and Validation of the CEM and LAQGSM Event Generators for MCNP6, MCNPX, and MARS15. arXiv preprint arXiv:08121820; 2008.
Meier MM, Goulding CA, Morgan GL, Ullmann JL. Neutron yields from stopping-length and near-stopping-length targets for 256-MeV protons. Nucl Sci Eng 104: 339-363; 1990.
Mills SJ, Steyn GF, Nortier FM. Experimental and theoretical excitation-functions of radionuclides produced in proton-bombardment of copper up to 200 MeV. Appl Radiat Isot 43: 1019-1030; 1992.
Nakamura T, Fujii M, Shin K. Neutron-production from thick targets of carbon, iron, copper, and lead by 30-MeV and 52-MeV protons. Nucl Sci Eng 83: 444-458; 1983.
NCRP. Radiation protection for particle accelerator facilities : recommendations of the National Council on Radiation Protection and Measurements. Bethesda, Md. : National Council on Radiation Protection & Measurements; 2003.
NSRL. Bragg Peak Measurements at NSRL [online]. Available at: http://www.bnl.gov/medical/NASA/CAD/Bragg/Bragg.asp.
NSRRC. 台灣光子源(TPS)輻射安全分析報告. 2010.
Pearlstein S. ENDF/HE-VI [online]. Available at: https://www-nds.iaea.org/exfor/endf.htm. Accessed June 29.
Pelowitz DB. MCNPX user’s manual version 2.7.0. Los Alamos National Laboratory; 2011.
PTCOG. Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. 2010.
Roesler S. Personal Communication. 2008.
Satoh D, Kurosawa T, Sato T, Endo A, Takada M, Iwase H, Nakamura T, Niita K. Reevaluation of secondary neutron spectra from thick targets upon heavy-ion bombardment. Nuclear Instruments & Methods in Physics Research Section A 583: 507-515; 2007.
Sheu R. Personal Communication. 2010.
Strasik I, Mustafin E, Seidl T, Pavlovic M. Experimental study and simulation of the residual activity induced by high-energy argon ions in copper. Nuclear Instruments and Methods in Physics Research Section B 268: 573-580; 2010.
Suzuki M, Tanaka H, Sakurai Y, Kashino G, Yong L, Masunaga S, Kinashi Y, Mitsumoto T, Yajima S, Tsutsui H, Sato T, Maruhashi A, Ono K. Impact of accelerator-based boron neutron capture therapy (AB-BNCT) on the treatment of multiple liver tumors and malignant pleural mesothelioma. Radiother Oncol 92: 89-95; 2009.
Swanson WP. Radiological safety aspects of the operation of electron linear accelerators. IAEA Vienna; 1979.
Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, Liu Y, Mitsumoto T, Yajima S, Tsutsui H, Maruhashi A, Ono K. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 267: 1970-1977; 2009.
Ulrici L, Magistris M. Radioactive waste management and decommissioning of accelerator facilities. Radiation protection dosimetry 137: 138-148; 2009.
Waterman F, Kuchnir F, Skaggs L, Kouzes R, Moore W. Neutron spectra from 35 and 46 MeV protons, 16 and 28 MeV deuterons, and 44 MeV 3He ions on thick beryllium. Medical physics 6: 432-435; 1979.
Yashima H, Uwamino Y, Iwase H, Sugita H, Nakamura T, Ito S, Fukumura A. Cross sections for the production of residual nuclides by high-energy heavy ions. Nuclear Instruments and Methods in Physics Research Section B 226: 243-263; 2004.
楊昇. 加速器型硼中子捕獲治療超熱中子束之濾屏匯聚設計及假體劑量分析. 國立清華大學碩士論文; 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *