帳號:guest(3.142.36.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪嘉謙
作者(外文):Hung, Chia Chian
論文名稱(中文):具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
論文名稱(外文):Enhanced Tumor Penetration and Cellular Uptake of a Smart Surface Charge-Switchable Nanomedicine Delivery System for Imaging-Guided Photothermal/Chemo Therapies
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin Cheng
口試委員(中文):莊淳宇
王子威
陳韻晶
姜文軒
口試委員(外文):Chuang, Chun Yu
Wang, Tzu Wei
Chen, Yun Ching
Chiang, Wen Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012530
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:108
中文關鍵詞:表面電荷轉換奈米藥物傳輸系統光熱治療化學治療增強腫瘤滲透
外文關鍵詞:surface charge transitionnanoparticle-based drug delivery systemphotothermal therapychemotherapypromoted tumor penetration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了改善癌症治療的功效,提高治療藥劑累積於腫瘤極為重要。為此,發展具增強腫瘤滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統,此研究採用具特殊功能化材料N-acetyl histidine modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (簡稱, Histidine-TPGS)與生物可降解之poly(lactic-co-glycolic acid) (PLGA)為材料,於水溶液中利用疏水聚集形成穩定奈米微粒,並同時裝載癌症化療藥物doxorubicin (DOX)與光熱藥劑indocyanine green (ICG)。由物理表徵與體外細胞吞噬數據顯示Histidine-TPGS結合於載藥微粒表面,在微酸的環境下,微粒表面的imidazole質子化產生正電荷,促進與細胞膜上負電荷產生靜電作用力,有效地提高藥物被細胞吞噬的程度。更重要的,於活體影像與體內分佈結果顯示,具表面電荷翻轉能力的載藥奈米微粒,可以像似”奈米子彈”快速並大量累積於腫瘤部位,藉由粒徑較小、趨近電中性的表面,不僅能促進被癌細胞內吞的程度,且也能增加被腫瘤相關巨噬細胞吞噬的機會,進一步深層滲透至缺氧區。此外,腫瘤生長抑制研究結果明顯表眀,以ICG作為影像導引光熱治療,不僅造成TRAMP-C1癌細胞嚴重傷害,更促使ICG/DOX-loaded奈米微粒於腫瘤組織滲透,提高DOX化療對於抗腫瘤的功效。綜合上述結果,本研究創造ICG/DOX-loaded的奈米微粒表現出無限的潛力,利用光熱與化學複合治療,以期達成抑制癌細胞生長與復發的最大效益。
In order to improve the efficacy of cancer treatment, the sufficient accumulation of therapeutic agents in tumor sites is extremely required. To this end, a smart surface charge alterable nanovehicle capable of enhancing tumor penetration and cellular uptake was developed and employed to deliver indocyanine green (ICG) and doxorubicin (DOX) molecules. By the coating of amphiphilic N-acetyl histidine modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (Hitidine-TPGS) on the surface of hydrophobic core composed of poly(lactic-co-glycolic acid) (PLGA) segments, the functionalized nanocarriers were attained. The physiochemical characterization and in vitro cellular uptake data indicate that the ICG/DOX-loaded nanoparticles with Histidine-TPGS coating show the efficiently promoted cellular uptake in weak acidic environment through the increased surface positive charges by protonation of more histidine moieties able to enhance their affinity to negatively charged cell membrane. Importantly, the findings of in vivo and ex vivo biodistribution suggest that the surface charge switchable ICG/DOX-loaded nanoparticles acted as a “nanobullet” are able to rapidly and intensively deposit in solid tumor, and effectively penetrate into deep tumor hypoxia by their small size, nearly neutrally-charged surface and promoted internalization by TRAMP-C1 cancer cells and tumor-associated macrophages. Furthermore, the in vivo tumor growth inhibition study strongly demonstrates that the imaging-guided ICG-based photo-thermotherapy not only largely damage TRAMP-C1 cancer cells but also significantly boost the penetration of ICG/DOX-loaded nanoparticles into tumor tissue, thus promoting DOX chemotherapy to realize the potent antitumor efficacy. Based on the above results, the created ICG/DOX-loaded nanobullets exhibit great potential to enhance the cancer treatment by the photothermo/chemo combinational therapy.
ABSTRACT................................................15
中文摘要.................................................17
致謝.....................................................18
一、文獻回顧..............................................19
1-1 惡性腫瘤.............................................19
1-2 腫瘤微環境介紹........................................21
1-3 腫瘤缺氧區...........................................24
1-4 腫瘤相關巨噬細胞......................................26
1-5 腫瘤缺氧區趨向巨噬細胞................................27
1-6 腫瘤治療.............................................28
1-7 腫瘤光熱治療之介紹....................................30
1-8 Enhanced permeation and retention (EPR) effect......32
1-9 奈米藥物載體傳遞系統...................................34
1-10 化學治療藥物-Doxorubicin (DOX)介紹...................35
1-11 光熱治療藥物-Indocyanine green (ICG)介紹.............36
1-12 D-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS)...................................................38
1-13 Histidine 與 Imidazole contain polymer 於藥物傳遞系統之應用......................................................39
二、研究動機.............................................41
三、實驗方法與步驟 ........................................44
3-1 高分子合成與鑑定......................................44
3-1-1 二甲基亞碸(DMSO)的除水..............................44
3-1-2 聚乙二醇琥珀酸酯修飾N-Acetyl-L-Histidne.............44
3-2 奈米微粒製備與性質探討 ................................45
3-2-1 奈米微粒製備.......................................45
3-2-2 奈米微粒的粒徑分布與表面電荷分析......................46
3-2-3 奈米微粒的藥物裝載量................................48
3-2-4 奈米微粒膠體及光學穩定性.............................48
3-2-5 穿透式電子顯微鏡影像................................49
3-2-6 奈米微粒體外藥物釋放實驗與分析.......................49
3-2-7 奈米微粒經近紅外光雷射照射升溫實驗....................50
3-3 體外細胞實驗.........................................51
3-3-1 細胞來源及適合之培養環境............................51
3-3-2 配置細胞培養液與磷酸鹽緩衝溶液.......................51
3-3-3 細胞繼代..........................................52
3-3-4 細胞計數..........................................53
3-3-5 模擬腫瘤微酸環境之細胞培養液pH值調整.................53
3-3-6 流式細胞儀分析.....................................53
3-3-7 細胞胞內DOX吞噬含量分析.............................54
3-3-8 細胞胞內ICG吞噬含量分析.............................54
3-3-9 小鼠巨噬細胞於ICG吞噬含量分析........................55
3-3-10 螢光顯微鏡觀察.....................................55
3-3-11 細胞毒性分析.......................................56
3-4 動物實驗..............................................58
3-4-1 動物來源...........................................58
3-4-2 腫瘤模型建立........................................58
3-4-3 動物體內藥物累積分佈.................................58
3-4-4腫瘤抑制生長評估......................................59
3-4-5 動物犧牲與腫瘤組織包埋................................60
3-4-6 組織切片............................................60
3-4-7 腫瘤組織切片Hematoxylin and eosin (H&E)染色..........60
3-4-8 組織切片免疫螢光染色.................................61
3-5 數據統計..............................................62
四、結果與討論.............................................63
4-1 高分子鑑定與物化分析....................................63
4-1-1 Histidine-TPGS 組分析成鑑定..........................63
4-2 奈米粒子特性分析.......................................64
4-2-1 奈米微粒性質分析.....................................64
4-2-2 載藥奈米微粒光學及粒子穩定性..........................67
4-2-3 近紅外光雷射照射升溫實驗..............................69
4-3細胞實驗...............................................76
4-3-1 微酸環境下細胞吞噬評估...............................76
4-3-2 細胞毒性分析.........................................83
4-4動物實驗...............................................85
4-4-1 動物體內藥物累積分佈..................................85
4-4-2 腫瘤抑制生長評估.....................................87
4-4-2 腫瘤組織切片觀察.....................................92
4-4-3 巨噬細胞RAW 264.7吞噬載藥微粒的程度分析...............100
五、結論..................................................101
六、參考文獻..............................................102
1. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation, 2003. 36(3): p. 131-149.
2. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-310.
3. Ivanchuk, S.M., et al., The INK4A/ARF locus: Role in cell cycle control and apoptosis and implications for glioma growth. Journal of Neuro-Oncology, 2001. 51(3): p. 219-229.
4. Kastan, M.B., C.E. Canman, and C.J. Leonard, P53, Cell-Cycle Control and Apoptosis - Implications for Cancer. Cancer and Metastasis Reviews, 1995. 14(1): p. 3-15.
5. Nigro, J.M., et al., Mutations in the P53 Gene Occur in Diverse Human-Tumor Types. Nature, 1989. 342(6250): p. 705-708.
6. Martinez-Outschoorn, U.E. and M.P. Lisanti, Tumor Microenvironment: Introduction. Seminars in Oncology, 2014. 41(2): p. 145-145.
7. Borriello, L. and Y.A. DeClerck, Tumor microenvironment and therapeutic resistance process. M S-Medecine Sciences, 2014. 30(4): p. 445-451.
8. Danquah, M.K., X.A. Zhang, and R.I. Mahato, Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews, 2011. 63(8): p. 623-639.
9. Du, J.Z., et al., Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnology Advances, 2014. 32(4): p. 789-803.
10. Ge, Z.S. and S.Y. Liu, Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 2013. 42(17): p. 7289-7325.
11. Wang, Y.G., et al., A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 2014. 13(2): p. 204-212.
12. Du, J.Z., et al., A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie-International Edition, 2010. 49(21): p. 3621-3626.
13. Guan, X.W., et al., A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomaterialia, 2013. 9(8): p. 7672-7678.
14. Kizaka-Kondoh, S., et al., Tumor hypoxia: A target for selective cancer therapy. Cancer Science, 2003. 94(12): p. 1021-1028.
15. Harris, A.L., Hypoxia - A key regulatory factor in tumour growth. Nature Reviews Cancer, 2002. 2(1): p. 38-47.
16. Comerford, K.M., E.P. Cummins, and C.T. Taylor, c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1 alpha-dependent P-glycoprotein expression in hypoxia. Cancer Research, 2004. 64(24): p. 9057-9061.
17. Comerford, K.M., et al., Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Research, 2002. 62(12): p. 3387-3394.
18. Semenza, G.L., et al., Transcriptional Regulation of Genes Encoding Glycolytic-Enzymes by Hypoxia-Inducible Factor-1. Journal of Biological Chemistry, 1994. 269(38): p. 23757-23763.
19. Denny, W.A., Prodrug strategies in cancer therapy. European Journal of Medicinal Chemistry, 2001. 36(7-8): p. 577-595.
20. Kato, Y., et al., Effects of Acute and Chronic Hypoxia on the Radiosensitivity of Gastric and Esophageal Cancer Cells. Anticancer Research, 2011. 31(10): p. 3369-3375.
21. Wouters, B.G. and J.M. Brown, Cells at intermediate oxygen levels can be more important than the ''hypoxic fraction'' in determining tumor response to fractionated radiotherapy. Radiation Research, 1997. 147(5): p. 541-550.
22. Parks, S.K., J. Chiche, and J. Pouyssegur, Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 2013. 13(9): p. 611-623.
23. Choi, J., et al., Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials, 2012. 33(16): p. 4195-4203.
24. Allavena, P., et al., The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunological Reviews, 2008. 222: p. 155-161.
25. Lewis, C. and C. Murdoch, Macrophage responses to hypoxia - Implications for tumor progression and anti-cancer therapies. American Journal of Pathology, 2005. 167(3): p. 627-635.
26. Rees, A.J., Monocyte and Macrophage Biology: An Overview. Seminars in Nephrology, 2010. 30(3): p. 216-233.
27. Ren, G.W., et al., CCR2-Dependent Recruitment of Macrophages by Tumor-Educated Mesenchymal Stromal Cells Promotes Tumor Development and Is Mimicked by TNF alpha. Cell Stem Cell, 2012. 11(6): p. 812-824.
28. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 2008. 8(12): p. 958-969.
29. Allavena, P., et al., The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Critical Reviews in Oncology Hematology, 2008. 66(1): p. 1-9.
30. Biswas, S.K., A. Sica, and C.E. Lewis, Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. Journal of Immunology, 2008. 180(4): p. 2011-2017.
31. Keizer, H.G., et al., Doxorubicin (Adriamycin) - a Critical-Review of Free Radical-Dependent Mechanisms of Cytotoxicity. Pharmacology & Therapeutics, 1990. 47(2): p. 219-231.
32. Marupudi, N.I., et al., Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opinion on Drug Safety, 2007. 6(5): p. 609-621.
33. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2(12): p. 751-760.
34. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116.
35. Huang, X.H., et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
36. Gobin, A.M., et al., Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Letters, 2007. 7(7): p. 1929-1934.
37. Huang, X.H., et al., Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008. 23(3): p. 217-228.
38. Diederich, C.J., Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. International Journal of Hyperthermia, 2005. 21(8): p. 745-753.
39. Chu, K.F. and D.E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews Cancer, 2014. 14(3): p. 199-208.
40. Loo, C., et al., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 2005. 5(4): p. 709-711.
41. Robinson, J.T., et al., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. Journal of the American Chemical Society, 2011. 133(17): p. 6825-6831.
42. Xu, L.G., et al., Conjugated polymers for photothermal therapy of cancer. Polymer Chemistry, 2014. 5(5): p. 1573-1580.
43. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1-2): p. 271-284.
44. Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 2001. 70(1-2): p. 1-20.
45. Luke, D.R., et al., Effects of Cyclosporine on the Isolated Perfused Rat-Kidney. Transplantation, 1987. 43(6): p. 795-799.
46. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012. 64: p. 353-365.
47. Fang, J., H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 2011. 63(3): p. 136-151.
48. Maeda, H., T. Sawa, and T. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release, 2001. 74(1-3): p. 47-61.
49. Patil, R.R., S.A. Guhagarkar, and P.V. Devarajan, Engineered nanocarriers of doxorubicin: A current update. Critical Reviews in Therapeutic Drug Carrier Systems, 2008. 25(1): p. 1-61.
50. Frederick, C.A., et al., Structural Comparison of Anticancer Drug DNA Complexes - Adriamycin and Daunomycin. Biochemistry, 1990. 29(10): p. 2538-2549.
51. Killory, B.D., et al., Prospective Evaluation of Surgical Microscope-Integrated Intraoperative near-Infrared Indocyanine Green Angiography during Cerebral Arteriovenous Malformation Surgery. Neurosurgery, 2009. 65(3): p. 456-462.
52. Cherrick, G.R., et al., Indocyanine Green - Observations on Its Physical Properties, Plasma Decay, and Hepatic Extraction. Journal of Clinical Investigation, 1960. 39(4): p. 592-600.
53. Wu, L., et al., Hybrid Polypeptide Micelles Loading Indocyanine Green for Tumor Imaging and Photothermal Effect Study. Biomacromolecules, 2013. 14(9): p. 3027-3033.
54. Zheng, M.B., et al., Robust ICG Theranostic Nanoparticles for Folate Targeted Cancer Imaging and Highly Effective Photothermal Therapy. Acs Applied Materials & Interfaces, 2014. 6(9): p. 6709-6716.
55. Zheng, M.B., et al., Single-Step Assembly of DOX/ICG Loaded Lipid-Polymer Nanoparticles for Highly Effective Chemo-photothermal Combination Therapy. Acs Nano, 2013. 7(3): p. 2056-2067.
56. Kamiya, K., N. Unno, and H. Konno, Intraoperative indocyanine green fluorescence lymphography, a novel imaging technique to detect a chyle fistula after an esophagectomy: Report of a case. Surgery Today, 2009. 39(5): p. 421-424.
57. Mi, Y., Y.T. Liu, and S.S. Feng, Formulation of Docetaxel by folic acid-conjugated D-alpha-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. Biomaterials, 2011. 32(16): p. 4058-4066.
58. Gan, C.W. and S.S. Feng, Transferrin-conjugated nanoparticles of Poly(lactide)-D-alpha-Tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 2010. 31(30): p. 7748-7757.
59. Zhang, Z.P., S.H. Lee, and S.S. Feng, Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials, 2007. 28(10): p. 1889-1899.
60. Zhang, Z.P., et al., In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharmaceutical Research, 2008. 25(8): p. 1925-1935.
61. Tanabe, M., et al., Expression of P-glycoprotein in human placenta: Relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. Journal of Pharmacology and Experimental Therapeutics, 2001. 297(3): p. 1137-1143.
62. Dintaman, J.M. and J.A. Silverman, Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharmaceutical Research, 1999. 16(10): p. 1550-1556.
63. Huang, Y.Z. and Y.P. Li, Drug Delivery and Reversal of MDR. Molecular Pharmaceutics, 2014. 11(8): p. 2493-2494.
64. Wacher, V.J., S. Wong, and H.T. Wong, Peppermint oil enhances cyclosporine oral bioavailability in rats: Comparison with D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS) and ketoconazole. Journal of Pharmaceutical Sciences, 2002. 91(1): p. 77-90.
65. Shieh, M.J., et al., Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. Journal of Controlled Release, 2011. 152(3): p. 418-425.
66. Lee, E.S., et al., Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. Journal of Controlled Release, 2003. 90(3): p. 363-374.
67. Benjaminsen, R.V., et al., The Possible "Proton Sponge" Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Molecular Therapy, 2013. 21(1): p. 149-157.
68. Li, S.L., et al., pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale, 2014. 6(22): p. 13701-13709.
69. Vivek, R., et al., pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids and Surfaces B-Biointerfaces, 2013. 111: p. 117-123.
70. He, Q.J., et al., A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011. 32(30): p. 7711-7720.
71. Gao, W.W., J.M. Chan, and O.C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2010. 7(6): p. 1913-1920.
72. Edgcomb, S.P. and K.P. Murphy, Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins-Structure Function and Genetics, 2002. 49(1): p. 1-6.
73. He, C.B., et al., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31(13): p. 3657-3666.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用羥基磷灰石/中孔矽殼包覆之奈米粒子調控鈣離子流入粒線體藉以提升光熱/化學合併治療
2. 三陰性乳癌的新療法策略開發-複合光熱、化療藥物誘導免疫原性細胞死亡以及乳酸氧化酶調節腫瘤微環境免疫系統介導免疫治療的三合一溫感型水膠的製備與應用
3. 多功能絲素蛋白水膠系統之開發及其應用於乳癌之光熱暨化學原位治療
4. 光應答性金屬奈米粒子應用於治療多重抗藥性腫瘤
5. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
6. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
7. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
8. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
9. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
10. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
11. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
12. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
13. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
14. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
15. 開發具氧化應答性奈米給藥傳輸系統於放射/化學複合療法應用
 
* *