帳號:guest(3.145.161.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林寬哲
作者(外文):Lin, Kuan-Che
論文名稱(中文):使用電氧化沉積方式製備奈米金核@氧化鐵殼奈米結構材料
論文名稱(外文):Synthesis of Gold@Iron Oxide Core-Shell Nanostructures via an Electroxidation Procedure
指導教授(中文):黃郁棻
指導教授(外文):Huang, Yu-Fen
口試委員(中文):黃志清
林宗宏
口試委員(外文):Chih-Ching Huang
Zong-Hong Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012522
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:核/殼奈米粒子金奈米粒子氧化鐵奈米粒子表面增強拉曼散射光譜
外文關鍵詞:core-shell nanoparticlesgold nanoparticlesiron oxide nanoparticlesSERS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
核/殼奈米材料由於其特殊的物理及化學特性,因此受到學者們的注目。本研究希望建立一套合成方法製備金/氧化鐵核殼奈米粒子。我們使用電沉積的方式,通過控制環境 pH值、緩衝溶液濃度及反應時間等參數,在水溶液中以檸檬酸鈉還原的金奈米粒子為核,將鐵氧化物沉積於金奈米粒子表面形成可調控鐵氧化物殼層厚度的金/氧化鐵核殼奈米粒子。鐵氧化物殼層厚度介於 5 ~ 15 nm之間的金/氧化鐵核殼奈米粒子在生物環境下具有高穩定性且能在拉曼光譜儀上偵測到拉曼分子的振動訊號。將金/氧化鐵核殼奈米粒子在 350℃氮氣環境下持續煅燒六個小時,在吸收光譜上觀察到明顯紅位移變化,在超導量子干涉儀上觀測到超順磁的特性。此結果增加金/氧化鐵核殼奈米粒子在核磁造影及磁導引靶向治療方面的潛力。
Core-shell nanostructures have attracted considerable interest as a new class of nanomaterials due to the fascinating physical and chemical characteristics. Herein, a facial and low-cost approach was reported for the synthesis of gold@iron oxide core-shell nanoparticles. By using the citrate-stabilized gold nanoparticles as seeds, the gold@iron oxide nanoparticles were prepared via an electroxidation of iron nail at 1.0 V between the electrodes in aqueous solution. Modulating with the parameters such as pH values, buffers and reaction time make the iron shell thickness to be well controlled. The optimized shell thickness was further utilized with gold narnoparticles for the surface-enhanced Raman scattering (SERS) effect by Raman spectrometry application. Most importantly, gold@iron oxide nanoparticles turn superparamagnetic after annealing at 350℃ for six hours under nitrogen environment. The enhanced magnetic properties of the resulting core-shell nanoparticles show their future potential in magnetic resonance imaging as well as targeted delivery through magnetofection.
摘要 2
Abstract 3
致謝 4
總目錄 5
圖目錄 10
表目錄 11
第一章 緒論 12
1.1 奈米材料 12
1.1.1 奈米材料介紹 12
1.1.2 核/殼奈米材料分類及介紹 13
1.1.3 核/殼奈米材料應用 15
1.2 金與氧化鐵核殼型複合奈米材料 16
1.2.1 金奈米粒子特性 16
1.2.2 氧化鐵奈米粒子特性 17
1.2.3 金與氧化鐵核殼型複合奈米材料特性、製備及應用 19
1.3 拉曼光譜儀 21
1.3.1 拉曼光譜介紹 21
1.3.2 表面增強拉曼散射光譜介紹 23
1.4 研究動機與目的 25
第二章 實驗材料與方法 27
2.1 實驗藥品與儀器 27
2.1.1 實驗藥品 27
2.1.2 緩衝溶液配置 28
2.1.3 細胞培養與使用 29
2.1.4 儀器 29
2.2 金/氧化鐵奈米核殼粒子的合成與特性鑑定 31
2.2.1 金奈米粒子的合成與特性鑑定 31
2.2.2 金奈米粒子載覆 2-萘硫酚分子的合成 31
2.2.3 將十二烷基硫酸鈉修飾於金奈米粒子表面的合成 31
2.2.4 金奈米粒子載覆 4-巰基嘧啶分子的合成 32
2.2.5 金/氧化鐵奈米核殼粒子的合成 32
2.2.6 金/氧化鐵奈米核殼粒子的鑑定 32
2.2.7 金/氧化鐵奈米核殼粒子載覆不同拉曼分子的拉曼訊號 33
2.3 金/氧化鐵奈米核殼粒子與目標細胞 HeLa cell 的拉曼訊號 33
2.3.1 金/氧化鐵奈米核殼粒子於生物環境的穩定性 33
2.3.2 暗視野顯微鏡影像 33
2.3.3 細胞內拉曼分子的振動光譜訊號 34
2.5 製備具有磁性的金/氧化鐵奈米核殼粒子與磁性鑑定 34
2.5.1 金/氧化鐵奈米核殼粒子煅燒實驗 34
2.5.2 回溶煅燒後的金/氧化鐵奈米核殼粒子 35
2.5.3 超導量子干涉儀實驗 35
2.5.4 磁振造影實驗 35
第三章 實驗結果與討論 36
3.1金/氧化鐵奈米核殼粒子的特性鑑定 36
3.1.1金/氧化鐵奈米核殼粒子的光譜特性 36
3.1.2金/氧化鐵奈米核殼粒子粒徑大小及表面電位分析 36
3.1.3 金/氧化鐵奈米核殼粒子結構分析 37
3.1.4 合成機制探討 37
3.2 奈米載體於拉曼光譜上的感測 39
3.2.1 奈米載體的拉曼光譜 39
3.2.2 奈米載體在生物環境下的穩定性 40
3.2.3 奈米載體在細胞條件下的拉曼光譜 41
3.3 金/氧化鐵奈米核殼粒子煅燒後的特性鑑定 41
3.3.1 煅燒後材料組態及結構分析 41
3.3.2 磁特性分析 42
第四章 結論 44
圖表說明 45
參考文獻 66
1. Henglein, A., Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chsm. Rev., 1989. 89: p. 1861-1873.
2. Hoener, C.F., K.A. Allan, A.J. Bard, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, and J.M. White, Demonstration of a Shell-Core Structure in Layered CdSe-ZnSe Small Particles by X-ray Photoelectron and Auger Spectroscopies. J. Phys. Chem., 1992. 96: p. 3812-3811.
3. Zhou, H.S., H. Sasahara, I. Honma, and H. Komiyama, Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties. Chem. Mater., 1994. 6: p. 1534-1541.
4. Chaudhuri, R.G. and S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev., 2012. 112: p. 2373–2433.
5. zhang, Q., I. Lee, J.B. Joo, F. Zaera, and Y. Yin, Core-Shell Nanostructured Catalysts. Acc. Chem. Res., 2012. 46: p. 1816–1824.
6. Liu, J., S.Z. Qiao, J.S. Chen, X.W. Lou, X. Xing, and G.Q. Lu, Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun., 2011. 47: p. 12578–12591.
7. Xu, Z., Y. Hou, and S. Sun, Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc, 2007. 129: p. 8698-8699.
8. Wang, D., H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, and H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater., 2013. 12: p. 81-87.
9. Lee, I., Q. Zhang, J. Ge, Y. Yin, and F. Zaera, Encapsulation of Supported Pt Nanoparticles with Mesoporous Silica for Increased Catalyst Stability. Nano Res, 2011. 4: p. 115-123.
10. Wu, W., T. Zhou, A. Berliner, P. Banerjee, and S. Zhou, Smart Core-Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chem. Mater., 2010. 22: p. 1966–1976.
11. Gao, X., L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, and S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005. 16: p. 63–72.
12. Kalele, S., S.W. Gosavi, J. Urban, and S.K. Kulkarni, Nanoshell particles: synthesis, properties and applications. Curr. Sci., 2006. 91: p. 1038-1052.
13. K.Jain, P., I.H. El-Sayed, and M.A. El-sayed, Au nanoparticles target cancer. nanotoday, 2007. 2: p. 18-29.
14. Liu, X., M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf., B 2007. 58: p. 3-7.
15. Cornell, R.M. and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. 2003: WILEY-VCH. 1-694.
16. Qiao, R., C. Yang, and M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem., 2009. 19: p. 6274-6294.
17. Plank, C., O. Zelphati, and O. Mykhaylyk, Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Advanced Drug Delivery Reviews, 2011. 63: p. 1300-1331.
18. Hu, S.H., S.Y. Chen, D.M. Liu, and C.S. Hsiao, Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism. Adv. Mater., 2008. 20: p. 2690-2695.
19. Tahir, A.A., K.G.U. Wijayantha, S.Y. Sina, M. Mazhar, and V. McKee, Nanostructured a-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation. Chem. Mater., 2009. 21: p. 3763-3772.
20. Park, H., P. Ayala, M.A. Deshusses, A. Mulchandani, H. Choi, and N.V. Myung, Electrodeposition of maghemite (g-Fe2O3) nanoparticles. Chem. Eng. J. , 2008. 139: p. 208-212.
21. Harvey, D.T. and R.W. Linton, Chemical Characterization of Hydrous Ferric Oxides by X-ray Photoelectron Spectroscopy. Anal. Chem. , 1981. 53: p. 1684-1688.
22. Jia, Y., T. Luo, X.Y. Yu, Z. Jin, B. Sun, J.H. Liu, and X.J. Huang, Facile one-pot synthesis of lepidocrocite (g-FeOOH) nanoflakes for water treatment. New J. Chem., 2013. 37: p. 2551-2556.
23. Martinez, L., D. Leinen, F. Martín, M. Gabas, J.R. Ramos-Barrado, E. Quagliata, and E.A. Dalchiele, Electrochemical Growth of Diverse Iron Oxide (Fe3O4, a-FeOOH, and g-FeOOH) Thin Films by Electrodeposition Potential Tuning. J. Electrochem. Soc. , 2007. 154: p. D126-D133.
24. Leung, C.F., S. Xuan, X. Zhu, D. Wang, C.P. Chak, S.F. Lee, K.W. Ho, and C.T. Chung, Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev., 2012. 41: p. 1911-1928.
25. Mezni, A., I. Balti, A. Mlayah, N. Jouini, and L.S. Smiri, Hybrid Au-Fe3O4 Nanoparticles: Plasmonic, Surface Enhanced Raman Scattering, and Phase Transition Properties. J. Phys. Chem. C., 2013. 117: p. 16166-16174.
26. Bell, C.S., S.S. Yu, and T.D. Giorgio, The Multistrata Nanoparticle: an FeOx/Au Core/Shell Enveloped in a Silica-Au Shell. small, 2011. 7: p. 1158-1162.
27. Bao, J., W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, and Y. Li, Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation ACS Nano, 2007. 1: p. 293–298.
28. Levin, C.S., C. Hofmann, T.A. Ali, A.T. Kelly, E. Morosan, P. Nordlander, K.H. Whitmire, and N.J. Halas, Magnetic-Plasmonic Core-Shell Nanoparticles. ACS Nano, 2009. 3: p. 1379–1388.
29. Wang, H., D.W. Brandl, F. Le, P. Nordlander, and N.J. Halas, Nanorice: A Hybrid Plasmonic Nanostructure. Nano Lett., 2006. 6: p. 827-832.
30. Goon, I.Y., L.M.H. Lai, M. Lim, P. Munroe, J.J. Gooding, and R. Amal, Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem. Mater., 2009. 21: p. 673–681.
31. Wang, L., J. Bai, Y. Li, and Y. Huang, Multifunctional Nanoparticles Displaying Magnetization and Near-IR Absorption. Angew. Chem. Int. Ed., 2008. 47: p. 2439 –2442.
32. Sheng, Y. and J. Xue, Synthesis and properties of Au–Fe3O4 heterostructured nanoparticles. J. Colloid Interface Sci. , 2012. 374: p. 96–101.
33. Lim., Y.T., M.Y. Cho, J.K. Kim, S. Hwangbo., and B.H. Chung., Plasmonic Magnetic Nanostructure for Bimodal Imaging and Photonic-Based Therapy of Cancer Cells. ChemBioChem, 2007. 8: p. 2204–2209.
34. Shi, W., H. Zeng, Y. Sahoo, T.Y. Ohulchanskyy, Y. Ding, Z.L. Wang, M. Swihart, and P.N. Prasad, A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Lett., 2006. 6: p. 875-881.
35. Bardhan, R., W. Chen, C.P. Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, and N.J. Halas, Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Adv. Funct. Mater., 2009. 19: p. 3901–3909.
36. Bardhan, R., W. Chen, M. Bartels, P.T. Carlos, M.F. Botero, R.W. McAninch, A. Contreras, R. Schiff, R.G. Pautler, N.J. Halas, and A. Joshi, Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett., 2010. 10: p. 4920–4928.
37. Zhou, X., W. Xu, Y. Wang, Q. Kuang, Y. Shi, L. Zhong, and Q. Zhang, Fabrication of Cluster/Shell Fe3O4/Au Nanoparticles and Application in Protein Detection via a SERS Method. J. Phys. Chem. C., 2010. 114: p. 19607–19613.
38. Lin, F.H. and R.A. Doong, Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. J. Phys. Chem. C., 2011. 115: p. 6591–6598.
39. Hsuan, W.H., M. Aykol, D. Valley, W. Hou, and S.B. Cronin, Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nano Lett., 2010. 10: p. 1314–1318.
40. Das, R.S. and Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 2011. 57: p. 163– 176.
41. Singha, A., P. Dhar, and A. Roy, A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy. Am. J. Phys., 2005. 73: p. 224-233.
42. Li, J.M., C. Wei, W.F. Ma, Q. An, J. Guo, J. Hu, and C.C. Wang, Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres. J. Mater. Chem., 2012. 22: p. 12100–12106.
43. MacLaughlin, C.M., N. Mullaithilaga, G. Yang, S.Y. Ip, C. Wang, and G.C. Walker, Surface-Enhanced Raman Scattering Dye-Labeled Au Nanoparticles for Triplexed Detection of Leukemia and Lymphoma Cells and SERS Flow Cytometry. Langmuir, 2013. 29: p. 1908-1919.
44. Fleischmann, M., P.J. Hendra, and A.J. Mcquillan, Raman spectra of pyridzne adsorbed at a silver electrode. Chem. Phys. Lett., 1974. 26: p. 163-166.
45. Jeanmair, D.L. and R.P.V. Duyne, Surface Raman spectroscopy. 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem., 1977. 84: p. 1-20.
46. Kelly, K.L., E. Coronado, L.L. Zhao, and G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B, 2003. 107: p. 668-677.
47. Brolo, A.G., D.E. Irish, and B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. J. Mol. Struct., 1997. 405: p. 29-44.
48. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275: p. 1102-1106.
49. Zong, S., Z. Wang, H. Chen, J. Yang, and Y. Cui, Surface Enhanced Raman Scattering Traceable and Glutathione Responsive Nanocarrier for the Intracellular Drug Delivery. Anal. Chem., 2013. 85: p. 2223-2230.
50. Pascal, C., J.L. Pascal, and F. Favier, Electrochemical Synthesis for the Control of g-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chem. Mater., 1999. 11: p. 141-147.
51. Li, J.F., Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, and Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010. 464: p. 392-395.
52. Liz-Marza´n, L.M., M. Giersig, and P. Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir, 1996. 12: p. 4329-4335.
53. Sujitha, M.V. and S. Kannan, Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy, 2013. 102: p. 15–23.
54. Balagurunathan, R., M. Radhakrishnan, R.B. Rajendran, and D. Velmurugan, Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J. Biochem. Biophys., 2011. 48: p. 331-335.
55. Epling, W.S., G.B. Hoflund, and J.F. Weaver, Surface Characterization Study of Au/g-Fe2O3 and Au/Co3O4 Low-Temperature CO Oxidation Catalysts. J. Phys. Chem., 1996. 100: p. 9929-9934.
56. Fujii, T., F.M.F.d. Groot, and G.A. Sawatzky, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B, 1999. 59: p. 3195-3202.
57. Bhargava, G., I. Gouzman, C.M. Chun, T.A. Ramanarayanan, and S.L. Bernasek, Characterization of the "native" surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study. Appl. Surf. Sci. , 2007. 253: p. 4322–4329.
58. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. , 2008. 254: p. 2441–2449.
59. Pradhan, G.K. and K.M. Parida, Fabrication, Growth Mechanism, and Characterization of a-Fe2O3 Nanorods ACS Appl. Mater. Interfaces, 2011. 3: p. 317–323.
60. Jia, Y., T. Luo, X.Y. Yu, Z. Jin, B. Sun, J.H. Liu, and X.J. Huang, Facile one-pot synthesis of lepidocrocite (g-FeOOH) nanoflakes for water treatment. New J. Chem., 2013. 37: p. 2551--2556.
61. Shi, X.F., N. Li, K. Zhao, G.W. Cui, Y.Q. Zhao, M.Y. Ma, K.H. Xu, P. Li, Y.B. Dong, and B. Tang, A dye-sensitized FeOOH-CNT photocatalyst with three electron transfer channels regulated by hydrogen bonding. Applied Catalysis B: Environmental, 2013. 136– 137: p. 334– 340.
62. Alvarez-Puebla, R.A., D.S.D.S. Jr, and R.F. Aroca, Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst, 2004. 129: p. 1251- 1256.
63. Chen, G., Y. Wang, M. Yang, J. Xu, S.J. Goh, M. Pan, and H. Chen, Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. J. Am. Chem. Soc., 2010. 132: p. 3644–3645.
64. Rigo, M.V., J. Seo, W.J. Kim, and S.S. Jung, Plasmon coupling of R6G-linked gold nanoparticle assemblies for surface-enhanced Raman spectroscopy. J. Vib. Spectro. , 2011. 57: p. 315– 318.
65. Gellner, M., K. Kömpe, and S. Schlücker, Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Anal. Bioanal. Chem., 2009. 394: p. 1839–1844.
66. Tay, L.L., P.J. Huang, J. Tanha, S. Ryan, X. Wu, J. Hulse, and L.K. Chau, Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chem. Commun., 2012. 48: p. 1024–1026.
67. Do, W.H., C.J. Lee, D.Y. Kim, and M.J. Jung, Adsorption of 2-mercaptopyridine and 4-mercaptopyridine on a silver surfaces investigated by SERS spectroscopy. J. Ind. Eng. Chem. , 2012. 18: p. 2141–2146.
68. Huang, P.J., L.K. Chau, T.S. Yang, L.L. Tay, and T.T. Lin, Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection. Adv. Funct. Mater., 2009. 19: p. 242–248.
69. Huang, C.C., C.H. Huang, I.T. Kuo, L.K. Chau, and T.S. Yang, Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids Surf., A 2012. 409: p. 61– 68.
70. Ock, K., W.I. Jeon, E.O. Ganbold, M. Kim, J. Park, J.H. Seo, K. Cho, S.W. Joo, and S.Y. Lee, Real-Time Monitoring of Glutathione-Triggered Thiopurine Anticancer Drug Release in Live Cells Investigated by Surface-Enhanced Raman Scattering. Anal. Chem., 2012. 84: p. 2172-2178.
71. Liu, H.L., J.H. Wu, J.H. Min, and Y.K. Kim, One-pot synthesis and characterization of bifunctional Au–Fe3O4 hybrid core–shell nanoparticles. J. Alloys Compd. , 2012. 537: p. 60–64.
72. Xu, X.N., Y. Wolfus, A. Shaulov, and Y. Yeshurun, Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations. J. Appl. Phys., 2002. 91: p. 4611-4616.
73. Machala, L., R. Zboril, and A. Gedanken, Amorphous Iron(III) Oxides-A Review. J. Phys. Chem. B, 2007. 111: p. 4003-4018.
74. Li, X.Q. and W.X. Zhang, Iron Nanoparticles: the Core-Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir, 2006. 22: p. 4638-4642.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *