|
1. Henglein, A., Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chsm. Rev., 1989. 89: p. 1861-1873. 2. Hoener, C.F., K.A. Allan, A.J. Bard, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, and J.M. White, Demonstration of a Shell-Core Structure in Layered CdSe-ZnSe Small Particles by X-ray Photoelectron and Auger Spectroscopies. J. Phys. Chem., 1992. 96: p. 3812-3811. 3. Zhou, H.S., H. Sasahara, I. Honma, and H. Komiyama, Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties. Chem. Mater., 1994. 6: p. 1534-1541. 4. Chaudhuri, R.G. and S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev., 2012. 112: p. 2373–2433. 5. zhang, Q., I. Lee, J.B. Joo, F. Zaera, and Y. Yin, Core-Shell Nanostructured Catalysts. Acc. Chem. Res., 2012. 46: p. 1816–1824. 6. Liu, J., S.Z. Qiao, J.S. Chen, X.W. Lou, X. Xing, and G.Q. Lu, Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun., 2011. 47: p. 12578–12591. 7. Xu, Z., Y. Hou, and S. Sun, Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc, 2007. 129: p. 8698-8699. 8. Wang, D., H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, and H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater., 2013. 12: p. 81-87. 9. Lee, I., Q. Zhang, J. Ge, Y. Yin, and F. Zaera, Encapsulation of Supported Pt Nanoparticles with Mesoporous Silica for Increased Catalyst Stability. Nano Res, 2011. 4: p. 115-123. 10. Wu, W., T. Zhou, A. Berliner, P. Banerjee, and S. Zhou, Smart Core-Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chem. Mater., 2010. 22: p. 1966–1976. 11. Gao, X., L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, and S. Nie, In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005. 16: p. 63–72. 12. Kalele, S., S.W. Gosavi, J. Urban, and S.K. Kulkarni, Nanoshell particles: synthesis, properties and applications. Curr. Sci., 2006. 91: p. 1038-1052. 13. K.Jain, P., I.H. El-Sayed, and M.A. El-sayed, Au nanoparticles target cancer. nanotoday, 2007. 2: p. 18-29. 14. Liu, X., M. Atwater, J. Wang, and Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf., B 2007. 58: p. 3-7. 15. Cornell, R.M. and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. 2003: WILEY-VCH. 1-694. 16. Qiao, R., C. Yang, and M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J. Mater. Chem., 2009. 19: p. 6274-6294. 17. Plank, C., O. Zelphati, and O. Mykhaylyk, Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects. Advanced Drug Delivery Reviews, 2011. 63: p. 1300-1331. 18. Hu, S.H., S.Y. Chen, D.M. Liu, and C.S. Hsiao, Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism. Adv. Mater., 2008. 20: p. 2690-2695. 19. Tahir, A.A., K.G.U. Wijayantha, S.Y. Sina, M. Mazhar, and V. McKee, Nanostructured a-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation. Chem. Mater., 2009. 21: p. 3763-3772. 20. Park, H., P. Ayala, M.A. Deshusses, A. Mulchandani, H. Choi, and N.V. Myung, Electrodeposition of maghemite (g-Fe2O3) nanoparticles. Chem. Eng. J. , 2008. 139: p. 208-212. 21. Harvey, D.T. and R.W. Linton, Chemical Characterization of Hydrous Ferric Oxides by X-ray Photoelectron Spectroscopy. Anal. Chem. , 1981. 53: p. 1684-1688. 22. Jia, Y., T. Luo, X.Y. Yu, Z. Jin, B. Sun, J.H. Liu, and X.J. Huang, Facile one-pot synthesis of lepidocrocite (g-FeOOH) nanoflakes for water treatment. New J. Chem., 2013. 37: p. 2551-2556. 23. Martinez, L., D. Leinen, F. Martín, M. Gabas, J.R. Ramos-Barrado, E. Quagliata, and E.A. Dalchiele, Electrochemical Growth of Diverse Iron Oxide (Fe3O4, a-FeOOH, and g-FeOOH) Thin Films by Electrodeposition Potential Tuning. J. Electrochem. Soc. , 2007. 154: p. D126-D133. 24. Leung, C.F., S. Xuan, X. Zhu, D. Wang, C.P. Chak, S.F. Lee, K.W. Ho, and C.T. Chung, Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev., 2012. 41: p. 1911-1928. 25. Mezni, A., I. Balti, A. Mlayah, N. Jouini, and L.S. Smiri, Hybrid Au-Fe3O4 Nanoparticles: Plasmonic, Surface Enhanced Raman Scattering, and Phase Transition Properties. J. Phys. Chem. C., 2013. 117: p. 16166-16174. 26. Bell, C.S., S.S. Yu, and T.D. Giorgio, The Multistrata Nanoparticle: an FeOx/Au Core/Shell Enveloped in a Silica-Au Shell. small, 2011. 7: p. 1158-1162. 27. Bao, J., W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, and Y. Li, Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation ACS Nano, 2007. 1: p. 293–298. 28. Levin, C.S., C. Hofmann, T.A. Ali, A.T. Kelly, E. Morosan, P. Nordlander, K.H. Whitmire, and N.J. Halas, Magnetic-Plasmonic Core-Shell Nanoparticles. ACS Nano, 2009. 3: p. 1379–1388. 29. Wang, H., D.W. Brandl, F. Le, P. Nordlander, and N.J. Halas, Nanorice: A Hybrid Plasmonic Nanostructure. Nano Lett., 2006. 6: p. 827-832. 30. Goon, I.Y., L.M.H. Lai, M. Lim, P. Munroe, J.J. Gooding, and R. Amal, Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem. Mater., 2009. 21: p. 673–681. 31. Wang, L., J. Bai, Y. Li, and Y. Huang, Multifunctional Nanoparticles Displaying Magnetization and Near-IR Absorption. Angew. Chem. Int. Ed., 2008. 47: p. 2439 –2442. 32. Sheng, Y. and J. Xue, Synthesis and properties of Au–Fe3O4 heterostructured nanoparticles. J. Colloid Interface Sci. , 2012. 374: p. 96–101. 33. Lim., Y.T., M.Y. Cho, J.K. Kim, S. Hwangbo., and B.H. Chung., Plasmonic Magnetic Nanostructure for Bimodal Imaging and Photonic-Based Therapy of Cancer Cells. ChemBioChem, 2007. 8: p. 2204–2209. 34. Shi, W., H. Zeng, Y. Sahoo, T.Y. Ohulchanskyy, Y. Ding, Z.L. Wang, M. Swihart, and P.N. Prasad, A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Lett., 2006. 6: p. 875-881. 35. Bardhan, R., W. Chen, C.P. Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, and N.J. Halas, Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Adv. Funct. Mater., 2009. 19: p. 3901–3909. 36. Bardhan, R., W. Chen, M. Bartels, P.T. Carlos, M.F. Botero, R.W. McAninch, A. Contreras, R. Schiff, R.G. Pautler, N.J. Halas, and A. Joshi, Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett., 2010. 10: p. 4920–4928. 37. Zhou, X., W. Xu, Y. Wang, Q. Kuang, Y. Shi, L. Zhong, and Q. Zhang, Fabrication of Cluster/Shell Fe3O4/Au Nanoparticles and Application in Protein Detection via a SERS Method. J. Phys. Chem. C., 2010. 114: p. 19607–19613. 38. Lin, F.H. and R.A. Doong, Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. J. Phys. Chem. C., 2011. 115: p. 6591–6598. 39. Hsuan, W.H., M. Aykol, D. Valley, W. Hou, and S.B. Cronin, Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nano Lett., 2010. 10: p. 1314–1318. 40. Das, R.S. and Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc., 2011. 57: p. 163– 176. 41. Singha, A., P. Dhar, and A. Roy, A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy. Am. J. Phys., 2005. 73: p. 224-233. 42. Li, J.M., C. Wei, W.F. Ma, Q. An, J. Guo, J. Hu, and C.C. Wang, Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres. J. Mater. Chem., 2012. 22: p. 12100–12106. 43. MacLaughlin, C.M., N. Mullaithilaga, G. Yang, S.Y. Ip, C. Wang, and G.C. Walker, Surface-Enhanced Raman Scattering Dye-Labeled Au Nanoparticles for Triplexed Detection of Leukemia and Lymphoma Cells and SERS Flow Cytometry. Langmuir, 2013. 29: p. 1908-1919. 44. Fleischmann, M., P.J. Hendra, and A.J. Mcquillan, Raman spectra of pyridzne adsorbed at a silver electrode. Chem. Phys. Lett., 1974. 26: p. 163-166. 45. Jeanmair, D.L. and R.P.V. Duyne, Surface Raman spectroscopy. 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem., 1977. 84: p. 1-20. 46. Kelly, K.L., E. Coronado, L.L. Zhao, and G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B, 2003. 107: p. 668-677. 47. Brolo, A.G., D.E. Irish, and B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. J. Mol. Struct., 1997. 405: p. 29-44. 48. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275: p. 1102-1106. 49. Zong, S., Z. Wang, H. Chen, J. Yang, and Y. Cui, Surface Enhanced Raman Scattering Traceable and Glutathione Responsive Nanocarrier for the Intracellular Drug Delivery. Anal. Chem., 2013. 85: p. 2223-2230. 50. Pascal, C., J.L. Pascal, and F. Favier, Electrochemical Synthesis for the Control of g-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chem. Mater., 1999. 11: p. 141-147. 51. Li, J.F., Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, and Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010. 464: p. 392-395. 52. Liz-Marza´n, L.M., M. Giersig, and P. Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir, 1996. 12: p. 4329-4335. 53. Sujitha, M.V. and S. Kannan, Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy, 2013. 102: p. 15–23. 54. Balagurunathan, R., M. Radhakrishnan, R.B. Rajendran, and D. Velmurugan, Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J. Biochem. Biophys., 2011. 48: p. 331-335. 55. Epling, W.S., G.B. Hoflund, and J.F. Weaver, Surface Characterization Study of Au/g-Fe2O3 and Au/Co3O4 Low-Temperature CO Oxidation Catalysts. J. Phys. Chem., 1996. 100: p. 9929-9934. 56. Fujii, T., F.M.F.d. Groot, and G.A. Sawatzky, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B, 1999. 59: p. 3195-3202. 57. Bhargava, G., I. Gouzman, C.M. Chun, T.A. Ramanarayanan, and S.L. Bernasek, Characterization of the "native" surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study. Appl. Surf. Sci. , 2007. 253: p. 4322–4329. 58. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. , 2008. 254: p. 2441–2449. 59. Pradhan, G.K. and K.M. Parida, Fabrication, Growth Mechanism, and Characterization of a-Fe2O3 Nanorods ACS Appl. Mater. Interfaces, 2011. 3: p. 317–323. 60. Jia, Y., T. Luo, X.Y. Yu, Z. Jin, B. Sun, J.H. Liu, and X.J. Huang, Facile one-pot synthesis of lepidocrocite (g-FeOOH) nanoflakes for water treatment. New J. Chem., 2013. 37: p. 2551--2556. 61. Shi, X.F., N. Li, K. Zhao, G.W. Cui, Y.Q. Zhao, M.Y. Ma, K.H. Xu, P. Li, Y.B. Dong, and B. Tang, A dye-sensitized FeOOH-CNT photocatalyst with three electron transfer channels regulated by hydrogen bonding. Applied Catalysis B: Environmental, 2013. 136– 137: p. 334– 340. 62. Alvarez-Puebla, R.A., D.S.D.S. Jr, and R.F. Aroca, Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst, 2004. 129: p. 1251- 1256. 63. Chen, G., Y. Wang, M. Yang, J. Xu, S.J. Goh, M. Pan, and H. Chen, Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. J. Am. Chem. Soc., 2010. 132: p. 3644–3645. 64. Rigo, M.V., J. Seo, W.J. Kim, and S.S. Jung, Plasmon coupling of R6G-linked gold nanoparticle assemblies for surface-enhanced Raman spectroscopy. J. Vib. Spectro. , 2011. 57: p. 315– 318. 65. Gellner, M., K. Kömpe, and S. Schlücker, Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Anal. Bioanal. Chem., 2009. 394: p. 1839–1844. 66. Tay, L.L., P.J. Huang, J. Tanha, S. Ryan, X. Wu, J. Hulse, and L.K. Chau, Silica encapsulated SERS nanoprobe conjugated to the bacteriophage tailspike protein for targeted detection of Salmonella. Chem. Commun., 2012. 48: p. 1024–1026. 67. Do, W.H., C.J. Lee, D.Y. Kim, and M.J. Jung, Adsorption of 2-mercaptopyridine and 4-mercaptopyridine on a silver surfaces investigated by SERS spectroscopy. J. Ind. Eng. Chem. , 2012. 18: p. 2141–2146. 68. Huang, P.J., L.K. Chau, T.S. Yang, L.L. Tay, and T.T. Lin, Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection. Adv. Funct. Mater., 2009. 19: p. 242–248. 69. Huang, C.C., C.H. Huang, I.T. Kuo, L.K. Chau, and T.S. Yang, Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids Surf., A 2012. 409: p. 61– 68. 70. Ock, K., W.I. Jeon, E.O. Ganbold, M. Kim, J. Park, J.H. Seo, K. Cho, S.W. Joo, and S.Y. Lee, Real-Time Monitoring of Glutathione-Triggered Thiopurine Anticancer Drug Release in Live Cells Investigated by Surface-Enhanced Raman Scattering. Anal. Chem., 2012. 84: p. 2172-2178. 71. Liu, H.L., J.H. Wu, J.H. Min, and Y.K. Kim, One-pot synthesis and characterization of bifunctional Au–Fe3O4 hybrid core–shell nanoparticles. J. Alloys Compd. , 2012. 537: p. 60–64. 72. Xu, X.N., Y. Wolfus, A. Shaulov, and Y. Yeshurun, Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations. J. Appl. Phys., 2002. 91: p. 4611-4616. 73. Machala, L., R. Zboril, and A. Gedanken, Amorphous Iron(III) Oxides-A Review. J. Phys. Chem. B, 2007. 111: p. 4003-4018. 74. Li, X.Q. and W.X. Zhang, Iron Nanoparticles: the Core-Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir, 2006. 22: p. 4638-4642.
|