帳號:guest(3.12.161.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃瑾琳
作者(外文):Huang, Chin-Lin
論文名稱(中文):奈米銀粒子誘發小鼠腦部神經細胞發炎反應及神經退化性效應之調控基因表現
論文名稱(外文):Silver Nanoparticles Affect on Gene Expression of Inflammatory and Neurodegenerative Responses in Mouse Neural Cells
指導教授(中文):莊淳宇
指導教授(外文):Chuang, Chun-Yu
口試委員(中文):黃鈺軫
廖憶純
口試委員(外文):Yuh-Jeen Huang
Yi-Chun Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012521
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:93
中文關鍵詞:奈米銀粒子神經退化性疾病發炎反應基因表現
外文關鍵詞:silver nanoparticleinflammationgene expressionneurodegenerative disease
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
奈米粒子(nanoparticles; NPs)為粒徑小於100 nm的分子,具有高度沉積性,能經由血液循環系統累積於身體器官。隨著奈米科技的發展,將銀奈米化後產生的奈米銀粒子(silver nanoparticles; AgNPs),由於表面積大幅增加且具有抗菌性,廣泛應用於生活用品中,如含銀衣物、化妝品、衛生用品及食品容器,使得人體暴露於奈米物質可能造成之健康風險大幅提升。已有研究指出經呼吸系統進入之NPs,可由血液循環通過血腦屏障,進入腦及中樞神經系統中,造成發炎反應,可能誘發神經退化性疾病,如阿茲海默症(Alzheimer's disease; AD)。
本研究藉由小鼠腦部調控細胞行為的星狀膠質細胞(murine brain ALT astrocytes)、調控發炎反應的微膠質細胞(microglial BV-2 cells),及調控神經訊號傳遞的腦神經瘤細胞 (neuroblastoma Neuro2a (N2a) cells)暴露3-5 nm AgNPs,探討AgNPs可能誘發發炎反應及神經退化性疾病相關基因表現之效應。研究結果顯示,在偏光顯微鏡下可以觀察到暴露12.5 µg/mL AgNPs會通過小鼠神經N2a細胞膜進入細胞內,增加interleukin-1β (IL-1β)分泌。此外,免疫螢光染色能偵測到AgNPs暴露會促使類澱粉蛋白(β-amyloid protein; Aβ)沈積。高濃度AgNPs (5-12.5 µg/mL)暴露會增加ALT細胞及BV-2細胞主要調控發炎反應和氧化還原相關之C-X-C motif chemokine 13 (CXCL13)、macrophage receptor with collagenous structure (MARCO)及glutathione synthetase (GSS)基因表現。隨AgNPs暴露濃度升高,在ALT、BV-2及N2a細胞也會誘發AD之沉積澱粉樣前驅蛋白(amyloid precursor protein; APP)基因表現量,並降低分解Aβ的腦啡肽酶neprilysin (NEP)及運送Aβ的接收器low-density lipoprotein receptor (LDLR)基因表現量。
利用Kyoto Encyclopedia of Genes and Genomes (KEGG)資料庫和Cytoscape軟體,分析Phalanx Mouse OneArray®基因晶片結果,發現AgNPs暴露會影響調控各種不同基因功能路徑的基因表現。在調控細胞行為及生長訊號的focal adhesion路徑中,AgNPs促使上游Ras protein-specific guanine nucleotide-releasing factor 1 (RasGRF1)基因表現上升,下調B-cell lymphoma 2 (BCL2)表現量,可能導致細胞凋亡。在調控發炎因子及細胞活化的cytosolic DNA sensing路徑中,AgNPs會降低three-prime repair exonuclease 1 (TREX1)表現量,調控下游interferon regulatory factor 7 (IRF7)基因表現下降,可能造成發炎相關的細胞激素釋放,引起發炎反應。與細胞反應、週期相關的MAPK路徑,AgNPs藉由影響上游基因growth arrest and DNA-damage-inducible alpha (GADD45α)過度表現,使調控神經細胞生長及分化功能的protein tyrosine phosphatase receptor-type R (PTPRR)表現量下調,影響小腦運動功能的協調能力。本研究也發現在AD致病路徑中之presenilin-1 (PSEN1)和presenilin-2 (PSEN2)基因,會因AgNPs暴露濃度增加而降低其表現量,可能引起鈣離子平衡失調並導致神經元突觸的功能障礙。此外,AgNPs暴露使得這三株小鼠神經細胞會共同參與免疫反應,促使interferon regulatory factor 1 (IRF1)基因表現,造成發炎相關細胞激素釋放及DNA損傷。
本研究顯示AgNPs會進入小鼠腦神經細胞內,引起發炎反應,促使Aβ蛋白產生,而且改變發炎反應、氧化壓力、細胞行為、發炎因子釋放、細胞週期、免疫反應及AD致病之相關基因表現。因此,根據本研究結果推測,暴露AgNPs可能會誘發神經退化性疾病之病程。
Nanoparticles are particles between 1 and 100 nanometers in size able to highly deposit in body organs by circulatory system. Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing clothes, cosmetics, wound dressing, air-freshener sprays, water disinfectant, sunscreens, hygiene products and food containers. Human would suffer health risk due to the widespread usage of AgNPs. AgNPs can cross through blood brain barrier (BBB) to enter into the brain and central nervous system (CNS), and might induce inflammatory response for the progression of neurodegenerative disease such as Alzheimer’s disease (AD).
This study investigated the potential effects of 3-5 nm AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. ALT, BV-2 and N2a cells respectively regulate cell behavior, inflammatory response and signal transduction. The results found AgNPs can cross the cell membrane of N2a cells detectable under a polarizing microscope, and obviously increase interleukin-1β (IL-1β) secretion. Additionally, immunofluorescence images showed amyloid-β (Aβ) plaques for pathological feature of AD deposited in neural cells after AgNPs exposure. ALT and BV-2 cells mainly corresponded to the increased gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress after 5, 10 and 12.5 µg/mL AgNPs exposure. AgNPs exposure induced the gene expression of amyloid precursor protein (APP), and reduced amyloid-degrading enzyme neprilysin (NEP) and Aβ transporter low-density lipoprotein receptor (LDLR) underlying the potential effect on Aβ deposition in ALT, BV-2 and N2a cells.
In the analysis of Phalanx Mouse OneArray® chip data, Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Cytoscape software were used to identify the alternation of gene expression in various pathways for neural cells exposed AgNPs. In focal adhesion pathway regulating cell behavior and growth signaling, AgNPs might induce the gene expression of ras protein-specific guanine nucleotide-releasing factor 1 (RasGRF1) and reduce the downstream B-cell lymphoma 2 (BCL2) gene potentially to cause cell death. AgNPs exposure would reduce the gene expression of three-prime repair exonuclease 1 (TREX1) and decrease interferon regulatory factor 7 (IRF7) to release inflammatory related cytokines in cytosolic DNA sensing for inflammation and cellular activation. In MAPK pathway relevant to cellular response and cell cycle, AgNPs could induce growth arrest and DNA-damage-inducible alpha (GADD45α) gene overexpression and reduce downstream protein tyrosine phosphatase receptor-type R (PTPRR) gene to interfere with neuron growth and differentiation, cerebellum motor coordination and balance skills. The findings of this study presented AgNPs exposure decreased presenilin-1 (PSEN1) and presenilin-2 (PSEN2) gene expression in dose-dependent manners to disrupt calcium homeostasis and presynaptic dysfunction for AD development. In exposure to AgNPs, the three mouse neural cells were all involved in the immune response to induce interferon regulatory factor 1 (IRF1) gene expression underlying inflammatory cytokine release and DNA damage.
This study found that AgNPs can enter mouse neural cells to evoke inflammation and accelerate the Aβ plague formation. AgNPs exposure obviously altered the gene expression of inflammatory response, oxidative stress, cell behavior, cytokines release, cell cycle, immune effect and AD related genes. These findings suggested that AgNPs exposure potentially caused neurodegenerative disease progression.
Table of contents
Chapter 1 Introduction 1
1.1 Silver nanoparticles 1
1.2 Exposure routes of AgNPs 2
1.3 The effect of AgNPs 2
1.4 AgNPs induce neurotoxicity 4
1.5 Alzheimer’s disease 5
1.6 Neural cells 6
1.7 Gene expression in neural cells 7
Chapter 2 Aim of this study 10
Chapter 3 Material and Method 12
3.1 Cell culture and exposure 12
3.2 Cell proliferation of neural cells 13
3.3 Cytokine assay of IL-1β 13
3.4 RNA extraction 14
3.5 Polarizing microscope 15
3.6 Immunofluorescence detection of Aβ protein 15
3.7 Reverse transcription polymerase chain reaction and quantitative real-time PCR 16
3.8 Gene expression profiling analysis 19
3.9 Gene ontology analysis 20
3.10 KEGG pathway analysis 20
3.11 Cytoscape analysis 21
3.12 Statistical analysis 22
Chapter 4 Results 23
4.1 Morphology and cellular uptake of mouse neural cells in exposure to AgNPs… 23
4.2 Cytotoxicity of AgNPs in mouse neural cells 25
4.3 Cytokine secretion of mouse neural cells in exposure to AgNPs 26
4.4 Immunofluorescence staining of Aβ protein in N2a cells 27
4.5 Gene expression of inflammatory and AD related genes in mouse neural cells in exposure to AgNPs 32
4.6 Gene expression change with AgNPs treatment 34
4.7 GO term and KEGG pathway of differentially expressed genes in mouse neural cells after AgNPs treatment 36
4.8 Cytoscape analysis of differentially expressed genes in mouse neural cells after AgNPs treatment 45
4.9 Gene expression of RasGRF1 and BCL2 in AgNPs-treated ALT cells 54
4.10 Gene expression of TREX1 and IRF7 in AgNPs-treated BV-2 cells 56
4.11 Gene expression of GADD45α and PTPRR in AgNPs-treated N2a cells 58
4.12 Analysis of the selected gene expression relevant to AD pathway for AgNPs-treated cells 60
4.13 The number of DEGs after 5, 10 and 12.5 µg/mL AgNPs exposure in ALT, BV2 and N2a cells 63
4.14 Cytoscape analysis of Alzheimer’s disease and immune effect after AgNPs exposure in ALT, BV-2 and N2a cells 67
4.15 Analysis of Cytoscape in AgNPs-treated ALT, BV-2 and N2a cells 71
Chapter 5 Discussion 75
5.1 AgNPs exposure induced inflammatory response in mouse neural cells 76
5.2 AgNPs exposure lead to Aβ amyloid plaques deposition 77
5.3 AgNPs exposure changed gene expression in mouse neural cells 78
5.4 The potential mechanism of AD pathogenesis in mouse neural cells exposure to AgNPs 84
Chapter 6 Conclusion 86
Chapter 7 References 87

1 M. Ahamed, M. S. Alsalhi, and M. K. Siddiqui, 'Silver Nanoparticle Applications and Human Health', Clin Chim Acta, 411 (2010), 1841-8.
2 P. V. Asharani, Y. L. Wu, Z. Y. Gong, and S. Valiyaveettil, 'Toxicity of Silver Nanoparticles in Zebrafish Models', Nanotechnology, 19 (2008).
3 J. M. Basak, P. B. Verghese, H. Yoon, J. Kim, and D. M. Holtzman, 'Low-Density Lipoprotein Receptor Represents an Apolipoprotein E-Independent Pathway of Abeta Uptake and Degradation by Astrocytes', J Biol Chem, 287 (2012), 13959-71.
4 O. Belbin, H. Beaumont, D. Warden, A. D. Smith, N. Kalsheker, and K. Morgan, 'Psen1 Polymorphisms Alter the Rate of Cognitive Decline in Sporadic Alzheimer's Disease Patients', Neurobiol Aging, 30 (2009), 1992-9.
5 L. Bertram, C. M. Lill, and R. E. Tanzi, 'The Genetics of Alzheimer Disease: Back to the Future', Neuron, 68 (2010), 270-81.
6 C. Borras, D. Monleon, R. Lopez-Grueso, J. Gambini, L. Orlando, F. V. Pallardo, E. Santos, J. Vina, and J. Font de Mora, 'Rasgrf1 Deficiency Delays Aging in Mice', Aging (Albany NY), 3 (2011), 262-76.
7 C. Canugovi, R. A. Shamanna, D. L. Croteau, and V. A. Bohr, 'Base Excision DNA Repair Levels in Mitochondrial Lysates of Alzheimer's Disease', Neurobiol Aging (2014).
8 D. Cao, K. Fukuchi, H. Wan, H. Kim, and L. Li, 'Lack of Ldl Receptor Aggravates Learning Deficits and Amyloid Deposits in Alzheimer Transgenic Mice', Neurobiol Aging, 27 (2006), 1632-43.
9 K. Cha, H. W. Hong, Y. G. Choi, M. J. Lee, J. H. Park, H. K. Chae, G. Ryu, and H. Myung, 'Comparison of Acute Responses of Mice Livers to Short-Term Exposure to Nano-Sized or Micro-Sized Silver Particles', Biotechnol Lett, 30 (2008), 1893-9.
10 R. G. Chirivi, Y. E. Noordman, C. E. Van der Zee, and W. J. Hendriks, 'Altered Map Kinase Phosphorylation and Impaired Motor Coordination in Ptprr Deficient Mice', J Neurochem, 101 (2007), 829-40.
11 B. R. Choi, W. H. Cho, J. Kim, H. J. Lee, C. Chung, W. K. Jeon, and J. S. Han, 'Increased Expression of the Receptor for Advanced Glycation End Products in Neurons and Astrocytes in a Triple Transgenic Mouse Model of Alzheimer's Disease', Exp Mol Med, 46 (2014), e75.
12 V. Christen, M. Capelle, and K. Fent, 'Silver Nanoparticles Induce Endoplasmatic Reticulum Stress Response in Zebrafish', Toxicol Appl Pharmacol, 272 (2013), 519-28.
13 G. J. Doherty, and H. T. McMahon, 'Mechanisms of Endocytosis', Annu Rev Biochem, 78 (2009), 857-902.
14 S. Dong, Y. Duan, Y. Hu, and Z. Zhao, 'Advances in the Pathogenesis of Alzheimer's Disease: A Re-Evaluation of Amyloid Cascade Hypothesis', Transl Neurodegener, 1 (2012), 18.
15 K. Dziendzikowska, J. Gromadzka-Ostrowska, A. Lankoff, M. Oczkowski, A. Krawczynska, J. Chwastowska, M. Sadowska-Bratek, E. Chajduk, M. Wojewodzka, M. Dusinska, and M. Kruszewski, 'Time-Dependent Biodistribution and Excretion of Silver Nanoparticles in Male Wistar Rats', J Appl Toxicol, 32 (2012), 920-8.
16 S. S. El-Amouri, H. Zhu, J. Yu, F. H. Gage, I. M. Verma, and M. S. Kindy, 'Neprilysin Protects Neurons against Abeta Peptide Toxicity', Brain Res, 1152 (2007), 191-200.
17 A. G. Eliopoulos, C. C. Wang, C. D. Dumitru, and P. N. Tsichlis, 'Tpl2 Transduces Cd40 and Tnf Signals That Activate Erk and Regulates Ige Induction by Cd40', EMBO J, 22 (2003), 3855-64.
18 H. J. Eom, and J. Choi, 'P38 Mapk Activation, DNA Damage, Cell Cycle Arrest and Apoptosis as Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells', Environ Sci Technol, 44 (2010), 8337-42.
19 M. Erkens, B. Bakker, L. M. van Duijn, W. J. Hendriks, and C. E. Van der Zee, 'Protein Tyrosine Phosphatase Receptor Type R Deficient Mice Exhibit Increased Exploration in a New Environment and Impaired Novel Object Recognition Memory', Behav Brain Res, 265 (2014), 111-20.
20 F. Faedmaleki, H. Shirazi F, A. A. Salarian, H. Ahmadi Ashtiani, and H. Rastegar, 'Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and Hepg2 Cell Line', Iran J Pharm Res, 13 (2014), 235-42.
21 D. Farfara, V. Lifshitz, and D. Frenkel, 'Neuroprotective and Neurotoxic Properties of Glial Cells in the Pathogenesis of Alzheimer's Disease', J Cell Mol Med, 12 (2008), 762-80.
22 D. Farfara, D. Trudler, N. Segev-Amzaleg, R. Galron, R. Stein, and D. Frenkel, 'Gamma-Secretase Component Presenilin Is Important for Microglia Beta-Amyloid Clearance', Ann Neurol, 69 (2011), 170-80.
23 C. Farina, F. Aloisi, and E. Meinl, 'Astrocytes Are Active Players in Cerebral Innate Immunity', Trends Immunol, 28 (2007), 138-45.
24 R. Foldbjerg, D. A. Dang, and H. Autrup, 'Cytotoxicity and Genotoxicity of Silver Nanoparticles in the Human Lung Cancer Cell Line, A549', Arch Toxicol, 85 (2011), 743-50.
25 J. Font de Mora, L. M. Esteban, D. J. Burks, A. Nunez, C. Garces, M. J. Garcia-Barrado, M. C. Iglesias-Osma, J. Moratinos, J. M. Ward, and E. Santos, 'Ras-Grf1 Signaling Is Required for Normal Beta-Cell Development and Glucose Homeostasis', EMBO J, 22 (2003), 3039-49.
26 S. Fuller, M. Steele, and G. Munch, 'Activated Astroglia During Chronic Inflammation in Alzheimer's Disease--Do They Neglect Their Neurosupportive Roles?', Mutat Res, 690 (2010), 40-9.
27 B. K. Gaiser, S. Hirn, A. Kermanizadeh, N. Kanase, K. Fytianos, A. Wenk, N. Haberl, A. Brunelli, W. G. Kreyling, and V. Stone, 'Effects of Silver Nanoparticles on the Liver and Hepatocytes in Vitro', Toxicol Sci, 131 (2013), 537-47.
28 S. Gandy, 'The Role of Cerebral Amyloid Beta Accumulation in Common Forms of Alzheimer Disease', J Clin Invest, 115 (2005), 1121-9.
29 J. Gasparotto, N. Somensi, F. F. Caregnato, T. K. Rabelo, K. DaBoit, M. L. Oliveira, J. C. Moreira, and D. P. Gelain, 'Coal and Tire Burning Mixtures Containing Ultrafine and Nanoparticulate Materials Induce Oxidative Stress and Inflammatory Activation in Macrophages', Sci Total Environ, 463-464 (2013), 743-53.
30 T. Gudermann, and S. Roelle, 'Calcium-Dependent Growth Regulation of Small Cell Lung Cancer Cells by Neuropeptides', Endocr Relat Cancer, 13 (2006), 1069-84.
31 M. Gupta, S. K. Gupta, B. Hoffman, and D. A. Liebermann, 'Gadd45a and Gadd45b Protect Hematopoietic Cells from Uv-Induced Apoptosis Via Distinct Signaling Pathways, Including P38 Activation and Jnk Inhibition', J Biol Chem, 281 (2006), 17552-8.
32 A. Haase, S. Rott, A. Mantion, P. Graf, J. Plendl, A. F. Thunemann, W. P. Meier, A. Taubert, A. Luch, and G. Reiser, 'Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses', Toxicol Sci, 126 (2012), 457-68.
33 N. Hadrup, H. R. Lam, K. Loeschner, A. Mortensen, E. H. Larsen, and H. Frandsen, 'Nanoparticulate Silver Increases Uric Acid and Allantoin Excretion in Rats, as Identified by Metabolomics', J Appl Toxicol, 32 (2012), 929-33.
34 W. I. Hagens, A. G. Oomen, W. H. de Jong, F. R. Cassee, and A. J. Sips, 'What Do We (Need to) Know About the Kinetic Properties of Nanoparticles in the Body?', Regul Toxicol Pharmacol, 49 (2007), 217-29.
35 S. H. Han, Y. H. Kim, and I. Mook-Jung, 'Rage: The Beneficial and Deleterious Effects by Diverse Mechanisms of Actions', Mol Cells, 31 (2011), 91-7.
36 M. Hasan, J. Koch, D. Rakheja, A. K. Pattnaik, J. Brugarolas, I. Dozmorov, B. Levine, E. K. Wakeland, M. A. Lee-Kirsch, and N. Yan, 'Trex1 Regulates Lysosomal Biogenesis and Interferon-Independent Activation of Antiviral Genes', Nat Immunol, 14 (2013), 61-71.
37 W. J. Hendriks, G. Dilaver, Y. E. Noordman, B. Kremer, and J. A. Fransen, 'Ptprr Protein Tyrosine Phosphatase Isoforms and Locomotion of Vesicles and Mice', Cerebellum, 8 (2009), 80-8.
38 J. S. Herskovits, C. C. Burgess, R. A. Obar, and R. B. Vallee, 'Effects of Mutant Rat Dynamin on Endocytosis', J Cell Biol, 122 (1993), 565-78.
39 A. Hochman, H. Sternin, S. Gorodin, S. Korsmeyer, I. Ziv, E. Melamed, and D. Offen, 'Enhanced Oxidative Stress and Altered Antioxidants in Brains of Bcl-2-Deficient Mice', J Neurochem, 71 (1998), 741-8.
40 M. C. Hohnholt, M. Geppert, E. M. Luther, C. Petters, F. Bulcke, and R. Dringen, 'Handling of Iron Oxide and Silver Nanoparticles by Astrocytes', Neurochem Res, 38 (2013), 227-39.
41 K. Honda, H. Yanai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi, 'Irf-7 Is the Master Regulator of Type-I Interferon-Dependent Immune Responses', Nature, 434 (2005), 772-7.
42 S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, 'In Vitro Toxicity of Nanoparticles in Brl 3a Rat Liver Cells', Toxicol In Vitro, 19 (2005), 975-83.
43 S. Jayadev, A. Case, B. Alajajian, A. J. Eastman, T. Moller, and G. A. Garden, 'Presenilin 2 Influences Mir146 Level and Activity in Microglia', J Neurochem, 127 (2013), 592-9.
44 T. Kaewamatawong, W. Banlunara, P. Maneewattanapinyo, C. Thammachareon, and S. Ekgasit, 'Acute and Subacute Pulmonary Toxicity Caused by a Single Intratracheal Instillation of Colloidal Silver Nanoparticles in Mice: Pathobiological Changes and Metallothionein Responses', J Environ Pathol Toxicol Oncol, 33 (2014), 59-68.
45 T. Kanekiyo, C. C. Liu, M. Shinohara, J. Li, and G. Bu, 'Lrp1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-Beta', J Neurosci, 32 (2012), 16458-65.
46 S. J. Kang, Y. J. Lee, E. K. Lee, and M. K. Kwak, 'Silver Nanoparticles-Mediated G2/M Cycle Arrest of Renal Epithelial Cells Is Associated with Nrf2-Gsh Signaling', Toxicol Lett, 211 (2012), 334-41.
47 S. Kirchhoff, A. Oumard, M. Nourbakhsh, B. Z. Levi, and H. Hauser, 'Interplay between Repressing and Activating Domains Defines the Transcriptional Activity of Irf-1', Eur J Biochem, 267 (2000), 6753-61.
48 S. Koike, Y. Ogasawara, N. Shibuya, H. Kimura, and K. Ishii, 'Polysulfide Exerts a Protective Effect against Cytotoxicity Caused by T-Buthylhydroperoxide through Nrf2 Signaling in Neuroblastoma Cells', FEBS Lett, 587 (2013), 3548-55.
49 H. Komine, L. Kuhn, N. Matsushita, J. J. Mule, and S. Pilon-Thomas, 'Examination of Marco Activity on Dendritic Cell Phenotype and Function Using a Gene Knockout Mouse', PLoS One, 8 (2013), e67795.
50 A. Ksienzyk, B. Neumann, and A. Kroger, 'Irf-1 Is Critical for Ifngamma Mediated Immune Surveillance', Oncoimmunology, 1 (2012), 533-34.
51 A. Ksienzyk, B. Neumann, R. Nandakumar, K. Finsterbusch, M. Grashoff, R. Zawatzky, G. Bernhardt, H. Hauser, and A. Kroger, 'Irf-1 Expression Is Essential for Natural Killer Cells to Suppress Metastasis', Cancer Res, 71 (2011), 6410-8.
52 K. Kulthong, S. Srisung, K. Boonpavanitchakul, W. Kangwansupamonkon, and R. Maniratanachote, 'Determination of Silver Nanoparticle Release from Antibacterial Fabrics into Artificial Sweat', Part Fibre Toxicol, 7 (2010), 8.
53 S. M. Landau, M. Lu, A. D. Joshi, M. Pontecorvo, M. A. Mintun, J. Q. Trojanowski, L. M. Shaw, W. J. Jagust, and Initiative Alzheimer's Disease Neuroimaging, 'Comparing Positron Emission Tomography Imaging and Cerebrospinal Fluid Measurements of Beta-Amyloid', Ann Neurol, 74 (2013), 826-36.
54 D. Y. Lee, C. Fortin, and P. G. Campbell, 'Contrasting Effects of Chloride on the Toxicity of Silver to Two Green Algae, Pseudokirchneriella Subcapitata and Chlamydomonas Reinhardtii', Aquat Toxicol, 75 (2005), 127-35.
55 J. J. Li, D. Hartono, C. N. Ong, B. H. Bay, and L. Y. Yung, 'Autophagy and Oxidative Stress Associated with Gold Nanoparticles', Biomaterials, 31 (2010), 5996-6003.
56 S. L. Loo, A. G. Fane, T. T. Lim, W. B. Krantz, Y. N. Liang, X. Liu, and X. Hu, 'Superabsorbent Cryogels Decorated with Silver Nanoparticles as a Novel Water Technology for Point-of-Use Disinfection', Environ Sci Technol, 47 (2013), 9363-71.
57 A. Louvi, S. S. Sisodia, and E. A. Grove, 'Presenilin 1 in Migration and Morphogenesis in the Central Nervous System', Development, 131 (2004), 3093-105.
58 D. Matallanas, I. Arozarena, M. T. Berciano, D. S. Aaronson, A. Pellicer, M. Lafarga, and P. Crespo, 'Differences on the Inhibitory Specificities of H-Ras, K-Ras, and N-Ras (N17) Dominant Negative Mutants Are Related to Their Membrane Microlocalization', J Biol Chem, 278 (2003), 4572-81.
59 P. L. McGeer, and E. G. McGeer, 'Inflammation and the Degenerative Diseases of Aging', Ann N Y Acad Sci, 1035 (2004), 104-16.
60 N. Mei, Y. Zhang, Y. Chen, X. Guo, W. Ding, S. F. Ali, A. S. Biris, P. Rice, M. M. Moore, and T. Chen, 'Silver Nanoparticle-Induced Mutations and Oxidative Stress in Mouse Lymphoma Cells', Environ Mol Mutagen, 53 (2012), 409-19.
61 M. A. Meraz-Rios, D. Toral-Rios, D. Franco-Bocanegra, J. Villeda-Hernandez, and V. Campos-Pena, 'Inflammatory Process in Alzheimer's Disease', Front Integr Neurosci, 7 (2013), 59.
62 A. Mohamed, and E. Posse de Chaves, 'Abeta Internalization by Neurons and Glia', Int J Alzheimers Dis, 2011 (2011), 127984.
63 J. C. Morris, C. M. Roe, C. Xiong, A. M. Fagan, A. M. Goate, D. M. Holtzman, and M. A. Mintun, 'Apoe Predicts Amyloid-Beta but Not Tau Alzheimer Pathology in Cognitively Normal Aging', Ann Neurol, 67 (2010), 122-31.
64 T. Nakajima, R. Amanuma, K. Ueki-Maruyama, T. Oda, T. Honda, H. Ito, and K. Yamazaki, 'Cxcl13 Expression and Follicular Dendritic Cells in Relation to B-Cell Infiltration in Periodontal Disease Tissues', J Periodontal Res, 43 (2008), 635-41.
65 S. Nakayamada, Y. Okada, K. Saito, M. Tamura, and Y. Tanaka, 'Beta1 Integrin/Focal Adhesion Kinase-Mediated Signaling Induces Intercellular Adhesion Molecule 1 and Receptor Activator of Nuclear Factor Kappab Ligand on Osteoblasts and Osteoclast Maturation', J Biol Chem, 278 (2003), 45368-74.
66 M. S. Ola, M. Nawaz, and H. Ahsan, 'Role of Bcl-2 Family Proteins and Caspases in the Regulation of Apoptosis', Mol Cell Biochem, 351 (2011), 41-58.
67 B. M. Owens, J. W. Moore, and P. M. Kaye, 'Irf7 Regulates Tlr2-Mediated Activation of Splenic Cd11c(Hi) Dendritic Cells', PLoS One, 7 (2012), e41050.
68 M. H. Park, J. K. Lee, S. Choi, J. Ahn, H. K. Jin, J. S. Park, and J. S. Bae, 'Recombinant Soluble Neprilysin Reduces Amyloid-Beta Accumulation and Improves Memory Impairment in Alzheimer's Disease Mice', Brain Res, 1529 (2013), 113-24.
69 S. Pavan, M. Olivero, D. Cora, and M. F. Di Renzo, 'Irf-1 Expression Is Induced by Cisplatin in Ovarian Cancer Cells and Limits Drug Effectiveness', Eur J Cancer, 49 (2013), 964-73.
70 S. Pereira-Lopes, T. Celhar, G. Sans-Fons, M. Serra, A. M. Fairhurst, J. Lloberas, and A. Celada, 'The Exonuclease Trex1 Restrains Macrophage Proinflammatory Activation', J Immunol, 191 (2013), 6128-35.
71 R. Pihlaja, J. Koistinaho, T. Malm, H. Sikkila, S. Vainio, and M. Koistinaho, 'Transplanted Astrocytes Internalize Deposited Beta-Amyloid Peptides in a Transgenic Mouse Model of Alzheimer's Disease', Glia, 56 (2008), 154-63.
72 S. W. Pimplikar, R. A. Nixon, N. K. Robakis, J. Shen, and L. H. Tsai, 'Amyloid-Independent Mechanisms in Alzheimer's Disease Pathogenesis', J Neurosci, 30 (2010), 14946-54.
73 R. Y. Prasad, J. K. McGee, M. G. Killius, D. A. Suarez, C. F. Blackman, D. M. DeMarini, and S. O. Simmons, 'Investigating Oxidative Stress and Inflammatory Responses Elicited by Silver Nanoparticles Using High-Throughput Reporter Genes in Hepg2 Cells: Effect of Size, Surface Coating, and Intracellular Uptake', Toxicol In Vitro, 27 (2013), 2013-21.
74 D. A. Pujianto, A. E. Damdimopoulos, P. Sipila, J. Jalkanen, I. Huhtaniemi, and M. Poutanen, 'Bfk, a Novel Member of the Bcl2 Gene Family, Is Highly Expressed in Principal Cells of the Mouse Epididymis and Demonstrates a Predominant Nuclear Localization', Endocrinology, 148 (2007), 3196-204.
75 M. E. Quadros, and L. C. Marr, 'Environmental and Human Health Risks of Aerosolized Silver Nanoparticles', Journal of the Air & Waste Management Association, 60 (2010), 770-81.
76 M. E. Quadros, R. th Pierson, N. S. Tulve, R. Willis, K. Rogers, T. A. Thomas, and L. C. Marr, 'Release of Silver from Nanotechnology-Based Consumer Products for Children', Environ Sci Technol, 47 (2013), 8894-901.
77 M. F. Rahman, J. Wang, T. A. Patterson, U. T. Saini, B. L. Robinson, G. D. Newport, R. C. Murdock, J. J. Schlager, S. M. Hussain, and S. F. Ali, 'Expression of Genes Related to Oxidative Stress in the Mouse Brain after Exposure to Silver-25 Nanoparticles', Toxicol Lett, 187 (2009), 15-21.
78 M. Z. Ratajczak, M. Kucia, R. Liu, D. M. Shin, E. Bryndza, M. M. Masternak, M. Tarnowski, J. Ratajczak, and A. Bartke, 'Rasgrf1: Genomic Imprinting, Vsels, and Aging', Aging (Albany NY), 3 (2011), 692-7.
79 F. Ribeiro, J. A. Gallego-Urrea, K. Jurkschat, A. Crossley, M. Hassellov, C. Taylor, A. M. Soares, and S. Loureiro, 'Silver Nanoparticles and Silver Nitrate Induce High Toxicity to Pseudokirchneriella Subcapitata, Daphnia Magna and Danio Rerio', Sci Total Environ, 466-467 (2014), 232-41.
80 K. Saadipour, M. Yang, Y. Lim, K. Georgiou, Y. Sun, D. Keating, J. Liu, Y. R. Wang, W. P. Gai, J. H. Zhong, Y. J. Wang, and X. F. Zhou, 'Amyloid Beta(1)(-)(4)(2) (Abeta(4)(2)) up-Regulates the Expression of Sortilin Via the P75(Ntr)/Rhoa Signaling Pathway', J Neurochem, 127 (2013), 152-62.
81 M. Salem, J. T. Mony, M. Lobner, R. Khorooshi, and T. Owens, 'Interferon Regulatory Factor-7 Modulates Experimental Autoimmune Encephalomyelitis in Mice', J Neuroinflammation, 8 (2011), 181.
82 M. R. Sarkisian, and D. Siebzehnrubl, 'Abnormal Levels of Gadd45alpha in Developing Neocortex Impair Neurite Outgrowth', PLoS One, 7 (2012), e44207.
83 M. L. Selenica, J. A. Alvarez, K. R. Nash, D. C. Lee, C. Cao, X. Lin, P. Reid, P. R. Mouton, D. Morgan, and M. N. Gordon, 'Diverse Activation of Microglia by Chemokine (C-C Motif) Ligand 2 Overexpression in Brain', J Neuroinflammation, 10 (2013), 86.
84 H. S. Sharma, and A. Sharma, 'Neurotoxicity of Engineered Nanoparticles from Metals', CNS Neurol Disord Drug Targets, 11 (2012), 65-80.
85 J. G. Sheng, S. H. Bora, G. Xu, D. R. Borchelt, D. L. Price, and V. E. Koliatsos, 'Lipopolysaccharide-Induced-Neuroinflammation Increases Intracellular Accumulation of Amyloid Precursor Protein and Amyloid Beta Peptide in Appswe Transgenic Mice', Neurobiol Dis, 14 (2003), 133-45.
86 L. Shi, J. C. Perin, J. Leipzig, Z. Zhang, and K. E. Sullivan, 'Genome-Wide Analysis of Interferon Regulatory Factor I Binding in Primary Human Monocytes', Gene, 487 (2011), 21-8.
87 R. P. Singh, and P. Ramarao, 'Cellular Uptake, Intracellular Trafficking and Cytotoxicity of Silver Nanoparticles', Toxicol Lett, 213 (2012), 249-59.
88 M. P. Smith, and W. A. Cass, 'Oxidative Stress and Dopamine Depletion in an Intrastriatal 6-Hydroxydopamine Model of Parkinson's Disease', Neuroscience, 144 (2007), 1057-66.
89 M. V. Sofroniew, and H. V. Vinters, 'Astrocytes: Biology and Pathology', Acta Neuropathol, 119 (2010), 7-35.
90 Y. Song, X. Li, and X. Du, 'Exposure to Nanoparticles Is Related to Pleural Effusion, Pulmonary Fibrosis and Granuloma', Eur Respir J, 34 (2009), 559-67.
91 J. Tang, L. Xiong, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, and T. Xi, 'Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats', J Nanosci Nanotechnol, 9 (2009), 4924-32.
92 J. Tang, L. Xiong, G. Zhou, S. Wang, J. Wang, L. Liu, J. Li, F. Yuan, S. Lu, Z. Wan, L. Chou, and T. Xi, 'Silver Nanoparticles Crossing through and Distribution in the Blood-Brain Barrier in Vitro', J Nanosci Nanotechnol, 10 (2010), 6313-7.
93 A. D. Tappin, J. L. Barriada, C. B. Braungardt, E. H. Evans, M. D. Patey, and E. P. Achterberg, 'Dissolved Silver in European Estuarine and Coastal Waters', Water Res, 44 (2010), 4204-16.
94 V. P. Tryndyak, F. A. Beland, and I. P. Pogribny, 'E-Cadherin Transcriptional Down-Regulation by Epigenetic and Microrna-200 Family Alterations Is Related to Mesenchymal and Drug-Resistant Phenotypes in Human Breast Cancer Cells', Int J Cancer, 126 (2010), 2575-83.
95 T. Verano-Braga, R. Miethling-Graff, K. Wojdyla, A. Rogowska-Wrzesinska, J. R. Brewer, H. Erdmann, and F. Kjeldsen, 'Insights into the Cellular Response Triggered by Silver Nanoparticles Using Quantitative Proteomics', ACS Nano, 8 (2014), 2161-75.
96 A. Vilaysane, and D. A. Muruve, 'The Innate Immune Response to DNA', Semin Immunol, 21 (2009), 208-14.
97 A. P. Walczak, R. Fokkink, R. Peters, P. Tromp, Z. E. Herrera Rivera, I. M. Rietjens, P. J. Hendriksen, and H. Bouwmeester, 'Behaviour of Silver Nanoparticles and Silver Ions in an in Vitro Human Gastrointestinal Digestion Model', Nanotoxicology, 7 (2013), 1198-210.
98 S. Wang, R. Wang, L. Chen, D. A. Bennett, D. W. Dickson, and D. S. Wang, 'Expression and Functional Profiling of Neprilysin, Insulin-Degrading Enzyme, and Endothelin-Converting Enzyme in Prospectively Studied Elderly and Alzheimer's Brain', J Neurochem, 115 (2010), 47-57.
99 Y. Wang, B. Wang, M. T. Zhu, M. Li, H. J. Wang, M. Wang, H. Ouyang, Z. F. Chai, W. Y. Feng, and Y. L. Zhao, 'Microglial Activation, Recruitment and Phagocytosis as Linked Phenomena in Ferric Oxide Nanoparticle Exposure', Toxicol Lett, 205 (2011), 26-37.
100 J. Wei, K. Gabrusiewicz, and A. Heimberger, 'The Controversial Role of Microglia in Malignant Gliomas', Clin Dev Immunol, 2013 (2013), 285246.
101 N. Weiss, F. Miller, S. Cazaubon, and P. O. Couraud, 'The Blood-Brain Barrier in Brain Homeostasis and Neurological Diseases', Biochim Biophys Acta, 1788 (2009), 842-57.
102 S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W. H. De Jong, M. Van Zijverden, A. J. A. M. Sips, and R. E. Geertsma, 'Nano-Silver - a Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment', Nanotoxicology, 3 (2009), 109-U78.
103 H. M. Wilkins, K. Marquardt, L. H. Lash, and D. A. Linseman, 'Bcl-2 Is a Novel Interacting Partner for the 2-Oxoglutarate Carrier and a Key Regulator of Mitochondrial Glutathione', Free Radic Biol Med, 52 (2012), 410-9.
104 B. Wu, H. Yamaguchi, F. A. Lai, and J. Shen, 'Presenilins Regulate Calcium Homeostasis and Presynaptic Function Via Ryanodine Receptors in Hippocampal Neurons', Proc Natl Acad Sci U S A, 110 (2013), 15091-6.
105 Z. Xiang, L. Ho, S. Yemul, Z. Zhao, W. Qing, P. Pompl, K. Kelley, A. Dang, W. Qing, D. Teplow, and G. M. Pasinetti, 'Cyclooxygenase-2 Promotes Amyloid Plaque Deposition in a Mouse Model of Alzheimer's Disease Neuropathology', Gene Expr, 10 (2002), 271-8.
106 F. Xu, C. Piett, S. Farkas, M. Qazzaz, and N. I. Syed, 'Silver Nanoparticles (Agnps) Cause Degeneration of Cytoskeleton and Disrupt Synaptic Machinery of Cultured Cortical Neurons', Mol Brain, 6 (2013), 29.
107 C. Yu, E. Nwabuisi-Heath, K. Laxton, and M. J. Ladu, 'Endocytic Pathways Mediating Oligomeric Abeta42 Neurotoxicity', Mol Neurodegener, 5 (2010), 19.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *