帳號:guest(3.15.148.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇怡安
作者(外文):Su, Yi-An
論文名稱(中文):開發綠色蒸氣生成法串連高效能液相層析與感應耦合電漿質譜儀進行稻米中砷物種之連線分析研究
論文名稱(外文):Development of “Green” Vapor Generation System to Couple High Performance Liquid Chromatography with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Arsenic Species in Rice Samples
指導教授(中文):孫毓璋
指導教授(外文):Sun, Yuh-Chang
口試委員(中文):楊末雄
江旭禎
楊詔凱
口試委員(外文):Mo-Hsiung Yang
Shiuh-Jen Jiang
Chao-Kai Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:101012520
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:砷物種化學蒸氣生成法綠色化學
外文關鍵詞:RiceArsenicSpeciationChemical vapor generationSodium dithioniteGreen chemistry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
稻米為亞洲人重要的主食,因此,相較於其他農產品,稻米早已成為亞洲人砷暴露的重要來源之一。一般來說,砷可以許多不同的化學形式存在於環境介質之中,同時透過環境的傳播及人類的活動大量累積在人體之中。根據文獻報導,稻米中存在的砷物種主要是以無機砷(三價砷及五價砷)以及雙甲基砷居多,有鑑於砷的毒性強度與其氧化價態及化學型態息息相關,因此,掌握稻米中砷物種濃度分布資訊,對於確認稻米可被食用的安全性是絕對必要的。為達上述目的,本研究係利用化學蒸氣生成法結合高效能液相層析技術與感應耦合電漿質譜儀,建立一套具有選擇性及高靈敏度的連線分析系統來進行稻米中砷物種之分析測定。有別於過去,本研究所使用的化學蒸氣生成技術係首度使用連二亞硫酸鈉作為還原試劑,透過此一新穎化學試劑的使用,毋須經過額外樣品前處理程序即可有效地將所欲分析之砷物種氣化,並與樣品中可能的干擾物分離。同時,相較於傳統化學蒸氣生成法中所使用的還原試劑(硼氫化鈉、氯化亞錫等),連二亞硫酸鈉的毒性大幅降低,價格也明顯較低。根據實驗結果顯示,本研究所建立之連線分析系統不僅在稻米中砷物種分析提供了可信的測定結果,亦已符合當今綠色化學對於分析方法必須具備環境友善特性的需求。
Rice is a staple of the diet in Asia and contributes more arsenic (As) to the Asian diet than all other agricultural products. A variety of chemical forms of naturally occurring As can be arisen from natural sources and anthropogenic activities. According to literature report, the main As species that occurs in rice are inorganic As (e.g. As(III) and As(V)) and dimethylarsinic acid (DMA). Because the adverse effects of As is highly dependent on its oxidation state, speciation information for rice As is necessary to ensure that rice can be safely consumed. In this study, we developed a selective and sensitive hyphenated system employing a chemical vapor generation (CVG) system in conjunction with high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICP-MS) detection for the determination of As species in rice samples. The CVG system innovatively exploited a chemical reagent, sodium dithionite (Na2S2O4), to selectively convert As species into volatile products for separating interest analytes from possible interferences in rice extractant samples. Based on the experimental results, the As species of interest could be efficiently vaporized with the aid of Na2S2O4 without any further treatment. By contrast, the toxicity of the used chemicals in this study is much lower than that of the conventional reduction reagents, such as sodium borohydride (NaBH4) and tin(II) chloride (SnCl2). These satisfactory results demonstrated that our proposed system was not only reliable for the determination of As species in rice samples but also environmental-friendly fulfilling the goals of “Green Chemistry”.
摘要 I
Abstract II
謝誌..............................................................................................................................IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 稻米中砷物種濃度分析的重要性 1
1.1.1 砷物種的毒性以及代謝機制 3
1.1.2 稻米中砷的來源以及物種分布 7
1.2 砷物種分析技術發展 9
1.3 蒸氣生成法 10
1.3.1 化學蒸氣生成法 (Chemical vapor generation, CVG) 10
1.3.2 光化學蒸氣生成法 (Photochemical vapor generation, photo-CVG) 11
1.3.3 光觸媒輔助蒸氣生成法 (Photo-catalyst assisted vapor generation) 11
1.4 研究目的與方法 13
第二章 儀器分析及原理 14
2.1 高效能液相層析儀 14
陰離子交換層析法 18
逆相層析法 19
2.2 感應耦合電漿質譜儀 20
2.2.1 樣品導入系統 21
2.2.2 感應耦合電漿離子源 23
2.2.3 離子透鏡 (Ion lens) 26
2.2.4 四極柱質量分析器 29
2.2.5 離子偵測 30
第三章 實驗部分 33
3.1 藥品與儀器 33
3.1.1 試劑與材料 33
3.1.2 儀器裝置 34
3.2 化學蒸氣生成法產物鑑定之樣品製備 35
3.3 連線分析系統建立 38
3.4 真實樣品分析 38
3.4.1 樣品處理 38
3.4.2 萃取 38
第四章 結果與討論 42
4.1 連二亞硫酸鈉蒸氣生成技術反應機制之研究 42
4.2 層析分離操作條件最適化探討 50
4.3 化學蒸氣生成法操作條件最適化探討 53
4.3.1 還原試劑濃度最適化 53
4.3.2 pH值最適化 54
4.3.3 還原反應溫度最適化 56
4.3.4 還原反應時間最適化 58
4.4 連線分析系統特性與效能評估 59
4.4.1 連線分析系統特性與分析方法確效 59
4.4.2 真實樣品中砷物種分析 62
4.4.3 方法比較 64
第五章 結論 67
第六章 參考文獻 70
第七章 未來展望 77
附錄–論文口試審查委員意見修正情形一覽 81
[1] 劉鎮宗, 砷與生態的關係, 科學月刊 (1995) 134.
[2] WHO International Agency for Research on Cancer working group, Arsenic and Arsenic Compounds, A review of human carcinogens—Part C: metals, arsenic, dusts, and fibres, International Agency for Research on Cancer (2012) 41.
[3] National Air Pollution Control Administration Consumer Protection & Environmental Health Service, Air pollution aspects of arsenic and its compounds, National Service Center for Environmental Publications (1969).
[4] Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., and Thomas, D.J., Toxicol. Sci. 123 (2011) 305.
[5] 陳建仁. 從臺灣的砷經驗,展望世界未來, 科學人 (2004, 9月號). http://sa.ylib.com/MagCont.aspx?Unit=columns&id=530
[6] Chen, C.J., The Lancet 336 (1990) 442.
[7] Tseng, W.P., Environ. Health Perspect. 19 (1977) 109.
[8] Chen, C.J., Chuang, Y.C., Lin, T.M., and Wu, H.Y., Cancer Res. 45 (1985) 5895.
[9] Ng, J.C., Wang, J., and Shraim, A., Chemosphere 52 (2003) 1353.
[10] IARC, Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42., IARC Monogr Eval Carcinog Risks Hum Suppl, 7 (1987) 1.
[11] Joint FAO/WHO Expert Committee on Food Additives, N., J. Summary and conclusions. in Seventy-second meeting of Joint FAO/WHO Expert committee on food additives. Rome, Italy (2010)
[12] 行政院環境保護署, 飲用水水質標準, 行政院環保署 (2014)
[13] Dabeka, R.W., McKenzie, A.D., Lacroix, G.M., Cleroux, C., Bowe, S., Graham, R.A., Conacher, H.B., and Verdier, P., J. AOAC Int. 76 (1993) 14.
[14] Phillips, D.J.H., Aquat. Toxicol. 16 (1990) 151.
[15] Lunde, G., J. Sci. Food Agric. 24 (1973) 1021.
[16] Schoof, R.A., Yost, L.J., Eickhoff, J., Crecelius, E.A., Cragin, D.W., Meacher, D.M., and Menzel, D.B., Food Chem. Toxicol. 37 (1999) 839.
[17] Meharg, A.A., Williams, P.N., Adomako, E., Lawgali, Y.Y., Deacon, C., Villada, A., Cambell, R.C., Sun, G., Zhu, Y.G., Feldmann, J., Raab, A., Zhao, F.J., Islam, R., Hossain, S., and Yanai, J., Environ. Sci. Technol. 43 (2009) 1612.
[18] 行政院農委會, 101年我國糧食供需統計結果, 行政院農委會 (2012)
[19] Nordberg, M., Duffus, J., and Templeton, D.M., Pure Appl. Chem. 76 (2004).
[20] Fairchild EJ, L.R., Tatken RL, Regstry of toxic effects of chemical substance, U.D.o. Health, National Institute for Occupational Safety and Health. Cincinnati, OH. (1988)
[21] Hughes, M.F., Toxicol. Lett. 133 (2002) 1.
[22] Kaise, T., Horiguchi, Y., Fukui, S., Shiomi, K., Chino, M., and Kikuchi, T., Appl. Organomet. Chem. 6 (1992) 369.
[23] Aposhian, H.V., Zakharyan, R.A., Avram, M.D., Sampayo-Reyes, A., and Wollenberg, M.L., Toxicol. Appl. Pharmacol. 198 (2004) 327.
[24] Buchet, J.P., Lauwerys, R., and Roels, H., Int. Arch. Occup. Environ. Health 48 (1981) 71.
[25] Hindmarsh, J.T., Clin. Biochem. 35 (2002) 1.
[26] Kakoulli, I., Prikhodko, S.V., Fischer, C., Cilluffo, M., Uribe, M., Bechtel, H.A., Fakra, S.C., and Marcus, M.A., Anal. Chem. 86 (2014) 521.
[27] Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E., and Vasken Aposhian, H., Toxicol. Appl. Pharmacol. 163 (2000) 203.
[28] Zhao, F.J., Zhu, Y.G., and Meharg, A.A., Environ. Sci. Technol. 47 (2013) 3957.
[29] Ma, J.F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y., and Yano, M., Nature 440 (2006) 688.
[30] Amaral, C.D., Nobrega, J.A., and Nogueira, A.R., Talanta 115 (2013) 291.
[31] Meharg, A.A. and Hartley-Whitaker, J., New Phytol. 154 (2002) 29.
[32] Khan, M.A., Stroud, J.L., Zhu, Y.G., McGrath, S.P., and Zhao, F.J., Environmental Science & Technology 44 (2010) 8515.
[33] Xu, X.Y., McGrath, S.P., Meharg, A.A., and Zhao, F.J., Environmental Science & Technology 42 (2008) 5574.
[34] Li, R.Y., Stroud, J.L., Ma, J.F., McGrath, S.P., and Zhao, F.J., Environ. Sci. Technol. 43 (2009) 3778.
[35] Zheng, M.Z., Cai, C., Hu, Y., Sun, G.X., Williams, P.N., Cui, H.J., Li, G., Zhao, F.J., and Zhu, Y.G., New Phytol. 189 (2011) 200.
[36] 中華人民共和國國家標準, 食品安全國家標準 食品中汙染物限量, 中華人民共和國衛生部 (2013)
[37] Fowler, W.K., Stewart, D.C., Weinberg, D.S., and Sarver, E.W., J. Chromatogr. 558 (1991) 235.
[38] Szostek, B. and Aldstadt, J.H., J. Chromatogr. A 807 (1998) 253.
[39] Richter, J., Lischka, S., and Piechotta, C., Talanta 101 (2012) 524.
[40] Santos, W.N.L., Cavalcante, D.D., Macedo, S.M., Nogueira, J.S., and Silva, E.G.P., Food Anal. Meth. 6 (2012) 1128.
[41] Chen, G. and Chen, T., Talanta 119 (2014) 202.
[42] Heitkemper, D.T., Vela, N.P., Stewart, K.R., and Westphal, C.S., J. Anal. At. Spectrom. 16 (2001) 299.
[43] Narukawa, T., Matsumoto, E., Nishimura, T., and Hioki, A., Anal. Sci. 30 (2014) 245.
[44] Sofuoglu, S.C., Guzelkaya, H., Akgul, O., Kavcar, P., Kurucaovali, F., and Sofuoglu, A., Food Chem. Toxicol. 64 (2014) 184.
[45] Llorente-Mirandes, T., Calderon, J., Centrich, F., Rubio, R., and Lopez-Sanchez, J.F., Food Chem. 147 (2014) 377.
[46] Liu, W.-J., McGrath, S.P., and Zhao, F.-J., Plant Soil 376 (2013) 423.
[47] He, Y., Hou, X., Zheng, C., and Sturgeon, R.E., Anal. Bioanal. Chem. 388 (2007) 769.
[48] Webster, S.H., J. Chem. Educ. 24 (1947) 487.
[49] Marsh, J., Edinburgh New Philos. J. 21 (1836) 229.
[50] Holak, W., Analytical Chemistry 41 (1969) 1712.
[51] Thompson, K.C. and Thomerson, D.R., Analyst 99 (1974) 595.
[52] D'Ulivo, A., Spectrochim. Acta B 65 (2010) 360.
[53] Guo, X., Sturgeon, R.E., Mester, Z., and Gardner, G.J., Anal. Chem. 75 (2003) 2092.
[54] Marshall, G.D. and van Staden, J.F., J. Anal. At. Spectrom. 5 (1990) 681.
[55] Guo, X., Sturgeon, R.E., Mester, Z., and Gardner, G.J., Anal. Chem. 76 (2004) 2401.
[56] Zheng, C., Ma, Q., Wu, L., Hou, X., and Sturgeon, R.E., Microchem J. 95 (2010) 32.
[57] Yin, Y., Liang, J., Yang, L., and Wang, Q., J. Anal. At. Spectrom. 22 (2007) 330.
[58] Sun, Y.C., Chang, Y.C., and Su, C.K., Anal. Chem. 78 (2006) 2640.
[59] Yang, H., Lin, W.Y., and Rajeshwar, K., J. Photochem. Photobiol. A-Chem. 123 (1999) 137.
[60] Levy, I.K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F.G., and Litter, M.I., Environ. Sci. Technol. 46 (2012) 2299.
[61] 陳煜、孫毓璋, 碩士論文, 國立清華大學 (2012).
[62] Ma, L. and Tu, S.X., Environ. Chem. Lett. 9 (2011) 465.
[63] Welz, B. and Melcher, M., Analyst 109 (1984) 573.
[64] Tsai, M.W. and Sun, Y.C., Rapid Commun. Mass Spectrom. 22 (2008) 211.
[65] Pitzalis, E., Ajala, D., Onor, M., Zamboni, R., and D'Ulivo, A., Anal. Chem. 79 (2007) 6324.
[66] Chen, H., Brindle, I.D., and Le, X.C., Analytical Chemistry 64 (1992) 667.
[67] Le, X.C. and Ma, M., J. Chromatogr. A 764 (1997) 55.
[68] Ackley, K.L., B'Hymer, C., Sutton, K.L., and Caruso, J.A., J. Anal. At. Spectrom. 14 (1999) 845.
[69] Le, X.C., Cullen, W.R., and Reimer, K.J., Talanta 41 (1994) 495.
[70] Wangkarn, S. and Pergantis, S.A., J. Anal. At. Spectrom. 15 (2000) 627.
[71] Rabieh, S., Hirner, A.V., and Matschullat, J., J. Anal. At. Spectrom. 23 (2008) 544.
[72] Pan, F., Tyson, J.F., and Uden, P.C., J. Anal. At. Spectrom. 22 (2007) 931.
[73] Boucher, P., Accominotti, M., and Vallon, J.J., J. Chromatogr. Sci. 34 (1996) 226.
[74] Fukai, Y., Hirata, M., Ueno, M., Ichikawa, N., Kobayashi, H., Saitoh, H., Sakurai, T., Kinoshita, K., Kaise, T., and Ohta, S., Biol Pharm Bull 29 (2006) 1022.
[75] Afton, S., Kubachka, K., Catron, B., and Caruso, J.A., J Chromatogr A 1208 (2008) 156.
[76] Jarvis, K.E., Gray, A.L., and Houk, R.S., Handbook of Inductively Coupled Plasma Mass Spectrometry, Chapman and Hall, New York, USA, Blackie & Son Ltd. (1992).
[77] Taylor., H.E., Inductively coupled plasma mass spectrometry, San Diego, California, USA, Academic Press (2001).
[78] Todolí, J.L. and Mermet, J.M., Trac-Trends Anal. Chem. 24 (2005) 107.
[79] Dedina, J. and Tsalev, D.L., Hydride Generation Atomc Absorption Spectrometry, West Sussex, England, John Wiley & Sons, Inc (1995).
[80] 許傳正、江旭禎, 碩士論文, 國立中山大學 (2002).
[81] Pantsar-Kallio, M. and Korpela, A., Anal. Chim. Acta. 410 (2000) 65.
[82] 隋昱梅、黃耀輝, 碩士論文, 國立臺灣大學 (2011).
[83] Chung, S.K., J. Org. Chem. 46 (1981) 5457.
[84] Blankenhorn, G. and Moore, E.G., J. Am. Chem. Soc. 102 (1980) 1092.
[85] Odanaka, Y., Tsuchiya, N., Matano, O., and Goto, S., Anal. Chem. 55 (1983) 929.
[86] Hodgson, W.G., Neaves, A., and Parker, C.A., Nature 178 (1956) 489.
[87] De Vries, J.G. and Kellogg, R.M., J. Org. Chem. 45 (1980) 4126.
[88] Shih, T.T., Lin, C.H., Hsu, I.H., Chen, J.Y., and Sun, Y.C., Anal. Chem. 85 (2013) 10091.
[89] Sun, Y.C., Lee, Y.S., Shiah, T.L., Lee, P.L., Tseng, W.C., and Yang, M.H., J. Chromatogr. A 1005 (2003) 207.
[90] Villa-Lojo, M., Talanta 57 (2002) 741.
[91] Juskelis, R., Li, W., Nelson, J., and Cappozzo, J.C., J. Agric. Food. Chem. 61 (2013) 10670.
[92] Wang, R.Y., Hsu, Y.L., Chang, L.F., and Jiang, S.J., Anal Chim Acta 590 (2007) 239.
[93] Sur, R. and Dunemann, L., J. Chromatogr. B 807 (2004) 169.
[94] Makosza, M., Pure Appl. Chem. 72 (2000).
[95] Rinker, R.G., Lynn, S., Mason, D.M., and Corcoran, W.H., Ind. Eng. Chem. Res. 4 (1965) 282.
[96] Farmer, W. and Firth, J.B., J. Chem. Soc. 129 (1926) 119.
[97] Hazardous Substances Data Bank (HSDB), U.S. National Library of Medicine. http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
[98] Chen, L.W., Lu, X., and Le, X.C., Anal Chim Acta 675 (2010) 71.
[99] Sun, M., Liu, G., Wu, Q., and Liu, W., Talanta 106 (2013) 8.
[100] Petursdottir, A.H., Gunnlaugsdottir, H., Jorundsdottir, H., Mestrot, A., Krupp, E.M., and Feldmann, J., Anal. Bioanal. Chem. 404 (2012) 2185.
[101] Matousek, T., Currier, J.M., Trojankova, N., Saunders, R.J., Ishida, M.C., Gonzalez-Horta, C., Musil, S., Mester, Z., Styblo, M., and Dedina, J., J Anal At Spectrom 28 (2013) 1456.
[102] Deng, B., Qin, X., Xiao, Y., Wang, Y., Yin, H., Xu, X., and Shen, C., Talanta 109 (2013) 128.
[103] Sturgeon, R.E. and Grinberg, P., J. Anal. At. Spectrom. 27 (2012) 222.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 連續監測活體動物體內砷物種動態變化之微型化連線分析系統研究
2. 類金屬(無機銻及砷)在植物中的生物攝取機制與發展電化學方法分析銻及其物種
3. 利用Neutralizer-(micro-column)-ICP-MS連線系統測定高濃度酸中超微量雜質元素之分析研究
4. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
5. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
6. 建立HPLC-UV/nano-TiO2-ICP-MS連線系統進行尿液中汞物種之分析研究
7. 開發PVC beads packed micro-column ICP-MS連線系統進行高鹽基質樣品中微量元素的分析研究
8. 晶片型固相萃取技術開發及其在微量元素分析上的應用
9. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
10. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
11. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
12. 利用奈米金粒子訊號放大及磁性粒子分離技術進行核酸序列及汞離子之分析研究
13. Development of online HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS hyphenated system for determination of selenium species in nature water
14. Development of Microdialysis-In-tube SPE-ICP-MS System for the determination of trace elements in brain of anesthetized rat
15. 利用奈米探針技術搭配感應耦合電漿質譜儀建立高靈敏的病毒分型及定量分析研究
 
* *